hình thang cân ABCD ( AB //CD ) có DB là tia phân giác của góc D , DB vuông góc BC. Biết AB = 4 cm . tính chu vi hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
)Theo đề bài ABCD là ht cân đáy AB//CD
=>AD=BC=3cm (cạnh bên htc với BC=3cm-gt)
Kẻ BE//AD (E thuộc CD) thì
tứ giác ABED là hbh (2 cặp cạnnh //).Hình bh đó có đ/chéo DB cũng là phân giác góc D (gt) nên hbh ABED là h/thoi
=>DE=AB=BE=AD=3cm và AE vuông góc BD (tính chất 2 đ/chéo h/thoi)
Vậy AE//BC (cùng vuông góc với BD)
nên tứ giác ABCE cũng là hbh (2 cặp cạnh //).Hình bh đó có AB=BC nên hbh ABCE là h/thoi
=> CE=CB=3cm
Mặt khác tam giác BCE có BC=CE=EB=3cm nên tam giác BCE là tam giác đều
=> góc CBE=60o < góc CBD=1v (gt)
=> tia BE nằm giữa 2 tia BC,BD
=> điểm E nằm giữa 2 điểm C,D
=> CD= CE+ED=3cm+3cm
Vậy chu vi htc ABCD=5.3cm=15cm
)Theo đề bài ABCD là ht cân đáy AB//CD
=>AD=BC=3cm (cạnh bên htc với BC=3cm-gt)
Kẻ BE//AD (E thuộc CD) thì
tứ giác ABED là hbh (2 cặp cạnnh //).Hình bh đó có đ/chéo DB cũng là phân giác góc D (gt) nên hbh ABED là h/thoi
=>DE=AB=BE=AD=3cm và AE vuông góc BD (tính chất 2 đ/chéo h/thoi)
Vậy AE//BC (cùng vuông góc với BD)
nên tứ giác ABCE cũng là hbh (2 cặp cạnh //).Hình bh đó có AB=BC nên hbh ABCE là h/thoi
=> CE=CB=3cm
Mặt khác tam giác BCE có BC=CE=EB=3cm nên tam giác BCE là tam giác đều
=> góc CBE=60o < góc CBD=1v (gt)
=> tia BE nằm giữa 2 tia BC,BD
=> điểm E nằm giữa 2 điểm C,D
=> CD= CE+ED=3cm+3cm
Vậy chu vi htc ABCD=5.3cm=15cm
bạn tự vẽ hình nha!!
Ta có: gócBDC=gócABD(so le)
BDC^=ADB^ (gt BD là phân giác)
=>ABD^=ADB^
=> AD =AB =BC = a
mặt khác:
BDC^=1/2 ADC^ = 1/2 BCD^
mà BDC^ + BCD^ = 90*
=> BDC^ = 30*
=> CD = 2.BC = 2.a =
vậy chu vi hình thang là: a.3+2a =5a
\(\widehat{ABD}=\widehat{BDC}\left(SLT\right);\widehat{ADB}=\widehat{BDC}\left(GT\right)\\ \Rightarrow\widehat{ABD}=\widehat{ADB}\Rightarrow AD=AB=BC=4\left(cm\right)\)
(tam giác \(ADB\) cân tại \(A\))
Vì là h.thang cân mà có: BD là phân giác \(\widehat{D}\) nên AC cũng là phân giác \(\widehat{C}\) \(\Rightarrow\widehat{ACB}=\widehat{ACD}\)
Dễ thấy các góc bằng nhau: \(\widehat{BAC}=\widehat{ADB}=\widehat{BDC}=\widehat{ACD}=\widehat{ACB}=\widehat{ABD};\widehat{DBC}=\widehat{DAC}=90\)
\(\Rightarrow6\widehat{BDC}+90+90=360\Rightarrow\widehat{BDC}=30\)
\(\sin\widehat{BDC}=\dfrac{BC}{DC}\Rightarrow DC=\dfrac{BC}{\sin\widehat{BDC}}=\dfrac{4}{\sin30}=8\left(cm\right)\)
\(\Rightarrow P_{ABCD}=4+4+8+4=20\left(cm\right)\)
Vì AB // DC => góc ABD = góc BDC
Mà góc ADB = góc BDC ( DB là phân giác ADC )
=> góc ABD = góc ADB
=> tam giác ADB cân tại A
=> AD = AB = 4 (cm)
Mà ABCD là hình thang cân
=> AD = BC = 4 (cm)
Có : góc BDC = 1/2 góc ADC
mà góc ADC = góc BCD ( ABCD là hình thang cân )
=> góc BDC = 1/2 góc BCD => góc BCD = 2 . BDC
Xét tam giác BCD vuông tại B có
BDC + BCD = 90
<=> BDC + 2BDC = 90
<=> BDC = 30
mà BC là cạnh đối diện góc BDC
=> BC = 1/2 BD
Hay 4 = 1/2 BD
=> BD = 8 (cm)
Áp dụng ĐL Pytago vào tam giác BDC vuông tại B được
BC2 + DC2 = BD2
<=> DC = \(\sqrt{BD^2-BC^2}\)
<=> DC= \(\sqrt{8^2-4^2}=4\sqrt{3}\)
Vậy chu vi hình thang ABCD là
AB + BC + CD + AD = 4 + 4 + 4\(\sqrt{3}\) + 4 =12 + 4\(\sqrt{3}\) ( cm )