Cho tam giác ABC cân tại A có D là trung điểm cạnh BC. Gọi E là điểm đối xứng của A qua D.
a) Chứng minh: Tứ giác ABCE là hình thoi.
b) Từ C kẻ đường thẳng vuông góc với BC cắt tia BA tại F.
Chứng minh: tứ giác AECF là hình bình hành.
c) Gọi N là trung điểm của CF, kẻ CH vuông góc với AB tại H.
Chứng minh: tam giác DHN là tam giác vuông.
Giúp mình hộ với ạ! Mình đang cần gấp lắm!! :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tứ giác ABCD có:
- AM=MD (gt)
- MB=MC (gt)
=> Tứ giác ABCD là hình bình hành
Do △ABC là tam giác cân suy ra AM vừa là trung tuyến vừa là đường cao hay AM⊥BC
=> ABCD là hình thoi (đpcm)
b/ Hình thoi ABCD (cmt) có AC//BD => CF//BD => AF//BD (1)
Mặt khác ta có: AD⊥BC ; BF⊥BC => AD//BF (2)
AF và BD cùng cắt AD và BF (3)
Từ (1), (2), (3):
Vậy tứ giác ADBF là hình bình hành (đpcm)
a) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng với nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)
a. MA=MD (vì D đx A qua M) và MB=MC nên ABDC là hbh
Mà AB=AC nên ABDC là hthoi
b. Ta có AM là đtb tam giác EBC nên EC=2AM=AD
Mà FB=AD nên FB=EC
Mà FB//CE nên BCEF là hbh
Mà \(\widehat{FBC}=90^0\) nên BCEF là hcn
a: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
mà AB=AC
nên ABKC là hình thoi
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
Hình Tự Vẽ Nhe
a)
Áp dụng định lí PItago vào tam giác ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=13^2-5^2=12\left(cm\right)\)
b)
Tứ Giác ABCE có:
D là trung điểm của AC (gt)
D là trung điểm của BE ( E đối xứng B qua A )
=> Tứ Giác ABCE là Hình Bình Hành
c)
Ta có:
Vì tứ giác ABCE là hình bình hành => CE=AB; CE//AB ( tính chất hình bình hành ) (1)
Mà M đối xứng với B qua A => AM=AB (2)
CE//AB (cmt) => CE//AM (3)
Từ (1) và (2) (3) => CE//AM và CE=AM
Tứ Giác AMEC có:
CE=AM (cmt)
CE//AM (cmt)
Góc A = 90 độ (gt)
=> Tứ giác AMEC là Hình Chữ Nhật
a: Xét tứ giác ABCE có
D là trung điểm của đường chéo BC
D là trung điểm của đường chéo AE
Do đó: ABCE là hình bình hành
mà AB=AC
nên ABCE là hình thoi
b: Xét tứ giác AECF có
AE//CF
AF//CE
Do đó: AECF là hình bình hành
ta có AD=ED
BD=CD
=> ABCE là hình thoi