Biến đổi phân thức hữu tỉ sau:
\(B=\dfrac{1-\dfrac{1}{x^2}}{\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\dfrac{x}{x-1}-\dfrac{x+1}{x}}{\dfrac{x}{x+1}-\dfrac{x-1}{x}}=\dfrac{\dfrac{x^2-\left(x^2-1\right)}{x\left(x-1\right)}}{\dfrac{x^2-\left(x^2-1\right)}{x\left(x+1\right)}}=\dfrac{\dfrac{1}{x\left(x-1\right)}}{\dfrac{1}{x\left(x+1\right)}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{0;\pm1\right\}\\A=\dfrac{x+1}{x-1}\end{matrix}\right.\)
\(a,A=\dfrac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\\ b,B=\dfrac{1}{2}+\dfrac{x}{\dfrac{x+2-x}{x+2}}=\dfrac{1}{2}+\dfrac{x}{\dfrac{2}{x+2}}=\dfrac{1}{2}+\dfrac{x\left(x+2\right)}{2}\\ B=\dfrac{1+x^2+2x}{2}=\dfrac{\left(x+1\right)^2}{2}\)
a) \(\dfrac{1}{2}+\left[x:\left(1-\dfrac{x}{x+2}\right)\right]=\dfrac{1}{2}+\left(x:\dfrac{x+2-x}{x+2}\right)\)
\(=\dfrac{1}{2}+\dfrac{x\left(x+2\right)}{2}=\dfrac{x^2+2x+1}{2}=\dfrac{\left(x+1\right)^2}{2}\)
b)\(\left(1-\dfrac{1}{x^2}\right):\left(1+\dfrac{1}{x}+\dfrac{1}{x^2}\right)=\dfrac{x^3-1}{x^2}:\dfrac{x^2+x+1}{x^2}\)
\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right).x^2}{x^2.\left(x^2+x+1\right)}=x-1\)
\(B=\dfrac{x^2-1}{x^2}:\dfrac{x^2+x+1}{x^3}=\dfrac{x^2-1}{x^2}\cdot\dfrac{x^3}{x^2+x+1}=\dfrac{x\left(x^2-1\right)}{x^2+x+1}\)