K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMIN có \(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)

nên AMIN là hình chữ nhật

b: Xét ΔABC có

I là trung điểm của BC

IN//AB

Do đó: N là trung điểm của AC

Xét tứ giác AICD có

N là trung điểm của AC

N là trung điểm của DI

Do đó: AICD là hình bình hành

mà IA=IC

nên AICD là hình thoi

Bài 2: 

a: Xét ΔABC vuông tại A có 

\(AB=BC\cdot\cos60^0\)

\(\Leftrightarrow BC=\dfrac{a}{\dfrac{1}{2}}=2a\)

\(\Leftrightarrow AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\)

\(\widehat{C}=90^0-60^0=30^0\)

Sửa đề: BC=29cm

Ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\)

nên \(AB=\dfrac{20}{21}AC\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{20}{21}AC\right)^2+AC^2=29^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{841}{441}=841\)

\(\Leftrightarrow AC^2=441\)

hay AC=21(cm)

Ta có: \(AB=\dfrac{20}{21}AC\)(cmt)

nên \(AB=\dfrac{20}{21}\cdot21=20\left(cm\right)\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=20+21+29=70\left(cm\right)\)

16 tháng 1 2017

góc C laf30cm 

16 tháng 1 2017

sai rồi là 90

29 tháng 12 2019

Theo công hệ thức lương trong tam giác vuông ta có : 

\(AB^2=BH.BC\Leftrightarrow9=1,8.BC\Rightarrow BC=5\left(cm\right)\)

Định lý Pytago : 

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Như vậy khi ta quay tam giác ABC quanh trục AB ta thu được hình nón có đường cao \(AB=3\) , bán kính đáy \(AC=4\) và đường sinh \(BC=5\)

Diện tích xung quanh của hình nón thu được : 

\(S_{xq}=\pi rl=\pi.AC.BC=20\pi\left(cm^2\right)\)

Thể tích hình nón là : 

\(V=\frac{1}{3}\pi r^2h=\frac{1}{3}.\pi.4^2.3=16\pi\) ( cm khối )