K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

(Đề là trên tia BC nha)

â) Xét tam giác ABM va tam giac ADN ( ABM = ADN=90) , co :

BM=DN(gt)

AD=AB(ABCD là hinh vuông)

=> tam giac ABM = tam giac ADN (cgv-cgv)

=>AN=AM va MAB = NAD

Ta co : MAB + DAM=90

Ma MAB =NAD (cmt)

=>NAD + DAM =90

<=> NAM =90

Xet tg ANFM , co : AN//FM (gt) va AM//NF (gt)

=> ANFM la hbh

Ma NAM =90 (cmt) ; AN=AM (cmt)

=> ANFM là hình vuông ( Vì đây là hình chữ nhật có 2 cạnh kề bằng nhau )

b) Từ F kẻ FP vuông góc với NC , FH vuông góc với BC

Xét tam giác NPF và tam giác MHF (APF =HMF) , co :

MF = FN (AMFN la hinh vuong )

NFP=MFH ( cùng phụ với PFM )

=> tam giác NPF = tam giác MHF (c.huyen-gn)

=> PF=FH

Theo định lý đảo của tia phân giác trong NCM , co :

PF=FH(cmt)

Ma PF \(\perp\) PC (cách ve ) ; FH \(\perp\) CH

=> F nằm trên tia phân giác của NCM

c)Nói C và F , ta được CF là tia phân giác của NCM (câu b)

Ta có : PCF + FCH =PCH =90

Mà PCF = FCH ( CF là tia phân giác NCM)

=> PCH = 2 PCF (1)

Ta co : ACD + ACB = DCB =90

Mà ACD = ACB ( AC là tia phân giác DCB ; ABCD là hình vuông )

=> DCB = 2 ACD (2)

Từ (1) vả (2) => PCH + DCB = 2( PCF + ACD)

<=> 180 = 2 ( PCF + ACD)

<=> 180 = 2 . ACF

<=> ACF = 90

=>AC \(\perp\) CF( dpcm )

đ) Gọi R là giao điểm của hai đường chéo tg ABCD là AC và BD

Xét tam giác AFC , co :

OA =OF ( gt)

AR = CR ( do 2 đường chéo AC và BD cắt nhau tại trung điểm mỗi đường trong hình vuông ABCD )

=> OR là đường trung bình của tam giác AFC

=> O và R cùng thuộc 1 đường thẳng

Mặt khác , ta có : R \(\in\) BD ( cach ve )

=> O \(\in\) BD

=> O , B, D thẳng hàng

Ta có : OB //FC ( OR là đường trung bình )

=> BOFC là hình thang

Ôn tập : Tứ giác

4 tháng 11 2018

A B C D M N F O E I J x

a) Xét \(\Delta\)ABM và \(\Delta\)ADN có: ^ABM = ^ADN (=900); AB=AD; BM=DN  => \(\Delta\)ABM = \(\Delta\)ADN (c.g.c)

=> AM=AN (2 canh tương ứng);  ^BAM = ^DAN (2 góc tương ứng). Mà ^BAM + ^DAM = 900

=> ^DAN + ^DAM = ^MAN = 900 => AM vuông góc AN

Ta có: MF//AN; NF//AM; AM vuông góc AN nên ^MAN = ^AMF = ^ANF = 900

Do đó: Tứ giác ANFM là hình chữ nhật. Lại có: AM=AN (cmt) => Tứ giác ANFM là hình vuông (đpcm).

b) Gọi I và J lần lượt là hình chiếu của F trên 2 đường thẳng CD và BC

Tứ giác ANFM là hình vuông => FM=FN

Xét tứ giác CNFM có: ^MCN = ^MFN = 900 => ^FNC + ^CMF = 1800 => ^FNC = ^FMJ hay ^FNI = ^FMJ

Xét \(\Delta\)FIN và \(\Delta\)FJM có: ^FIN = ^FJM (=900); FN=FM; ^FNI = ^FMJ

=> \(\Delta\)FIN = \(\Delta\)FJM (Ch.gn) => FI = FJ (2 cạnh tương ứng)

Xét ^MCN: Có FI và FJ là k/c từ điểm F tới 2 cạnh của góc này; FI=FJ

=> F nằm trên đường phân giác của ^MCN (đpcm).

c) Gọi giao điểm của tia AD và CF là E.

CF là phân giác ^MCN => ^FCN = ^MCN/2 = 450 => ^FCN = ^ACD = 450 

=> \(\Delta\)ACE vuông tại C có đường phân giác CD. Mà CD vuông góc AE

=> \(\Delta\)ACE vuông cân tại C = >CD đồng thời là đường trung tuyến => D là trung điểm AE

Suy ra: OD là đường trung bình \(\Delta\)FAE => OD // EF hay OD // CF (1)

Dễ c/m: BD // CF (Do ^DBC + ^BCF = 450 + 1350 = 1800)                  (2)

Từ (1) và (2) => 3 điểm B;D;O thẳng hàng (đpcm).

d) Ta thấy: B;D;O là 3 điểm thẳng hàng; BD cố định nên O luôn thuộc đường thẳng BD cố định khi M di động trên Cx.

4 tháng 11 2018

câu e đâu bạn :v

26 tháng 11 2018

a, Theo giả thiết : AM//NF và AN//MF => ANFM là hình bình hành (1) 
mà AD = AB; DN = BM => tg vuông ADN = tg vuông ABM => AN = AM (2) 
và ^AND = ^AMB => AN _I_ AM (3) ( vì đã có DN _I_ BM) 
(1) và (2) => ANFM là hình thoi (4) 
(3) và (4) => ANFM là hình vuông 

b, Gọi P và giao điểm của AM và CN. Dễ thấy tg vuông ANP đồng dạng tg vuông CMP ( vì có ^P đối đỉnh ) => AP/CP = AN/CM = FM/CM (5) (vì FM = AN) 
Mặt khác : AP _I_ FM ( vì ANFM là hình vuông ) và CP _I_ CM => ^APC = ^FMC (6) ( góc có cạnh tương ứng vuông góc ) 
(5) và (6) => tg APC đồng dạng tam giác FMC => ^FCM = ^ACP = 45o = ^FCN => CF là tia phân giác của ^MCN và ^ACF = 90o 

c, Dễ thấy AO/AM = AD/AC = √2 (7) 
và vì ^OAM = ^DAC = 45o <=> ^OAM - ^DAM = ^DAC - ^DAM <=> ^OAD = ^MAC (8) 
(7) và (8) => tg AOD đồng dạng tg AMC => ^ADO = ^ACM = 135o => ^ODN = 45o = ^BDC => B; D; O thẳng hàng 
Dễ thấy BO//CF => BOFC là hình thang

25 tháng 8 2020

\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)

\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)

Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)

26 tháng 8 2020

(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.

=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2                                                                                                                                                                                   =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2                                                                                                                                                                                         2                          2                                                                                                                                                       Tương Tự:(1-c+c2) (1-d+d2> 1+c2d2                                                                                                                                                                                                                                                         2                                                                                                                                             

16 tháng 10 2018

13 tháng 11 2016

Ôi bạn vẽ hình đi mình giảng cho 

21 tháng 6 2019