Tìm số nguyên x y thỏa mãn x^2+3y^2+4xy=2x+6y+24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3y^2+2xy-2x+6y-4=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)
Làm nôt
Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)
\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)
Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)
\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)
Đến đây bí!
<=>\(x^2+2x\left(y-1\right)-3y^2+6y-8=0\)
coi phương trình là phương trình bậc 2 theo ẩn x nên ta có
\(\Delta^'=\left(y-1\right)^2+3y^2-6y+8\)
\(\Delta^'=4y^2-8y+9=\left(2y-4\right)^2-7\)
để phương trình có nghiệm x ,y nguyên thì \(\Delta^'=k^2\)
với k là số tự nhiên
\(\left(2y-4\right)^2-7=k^2\Leftrightarrow\left(2y-4+k\right)\left(2y-4-k\right)=7\)
khi đó (2y-4+k) và (2y-4-k) là ước của 7 là (1,7) do đó ta có hệ
\(\hept{\begin{cases}2y-4+k=7\\2y-4-k=1\end{cases}}\Leftrightarrow4y=16\Leftrightarrow y=4\)
với y=4 thay vào ta có
\(\Delta^'=\left(2.4-4\right)^2-7=9\)
\(\orbr{\begin{cases}x=\left(1-y\right)-3=1-4-3=-6\\x=\left(1-y\right)+3=1-4+3=0\end{cases}}\)
vậy (x,y)= (0,4) hoặc (-6,4)
Ta có:x^2-2x+1=6y^2-2x+2
x^2+1-2=6y^2-2x+2x
x^2-1=6y^2
y^2=x^2-1/6
Vì y^2 thuộc ước của x^2-1/6 suy ra y^2 là số chẵn mà y^2 là số chẵn suy ra y=2
Thay vào ta có:x^2-1/6=4
x^2-1=24
x^2=25
suy ra x=5.Vậy x=5:y=2 (Thử lại nhé)