K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Biến đổi vế trái

\(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)=\(\left(\sqrt{3+\sqrt{5}}\right)^2.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

=\(\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{4}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\sqrt{10\left(3+\sqrt{5}\right)}-2\sqrt{2\left(3+\sqrt{5}\right)}\)

\(=2\sqrt{30+10\sqrt{5}}-2\sqrt{6+2\sqrt{5}}\)

\(=2\sqrt{\left(5+\sqrt{5}\right)^2}-2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=2\left(5+\sqrt{5}\right)-2\left(\sqrt{5}+1\right)\)

\(=10+2\sqrt{5}-2\sqrt{5}-2=8\)

Sau khi biến đổi ta thấy vế trái bằng vế phải. Vậy đẳng thức đã được chứng minh

10 tháng 9 2019

\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\cdot\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{2}\cdot\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left(3+\sqrt{5}\right)\cdot\left(\sqrt{5}-1\right)^2\)

\(=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)

\(=2\cdot\left(3+\sqrt{5}\right)\cdot\left(3-\sqrt{5}\right)\)

\(=2\cdot\left(9-5\right)\)

\(=2-4=8\)

10 tháng 9 2019

@buithianhtho giúp mk vs

25 tháng 9 2019

\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)

\(\left(3+\sqrt{5}\right).\left(\sqrt{5}-1\right).\sqrt{2}.\sqrt{3-\sqrt{5}}\)

\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)

\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right).\sqrt{\left(\sqrt{5-1}\right)^2}\)

\(\left(3+\sqrt{5}\right).\left(\sqrt{5}-1\right)^2\)

\(\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)

\(2.\left(3+\sqrt{5}\right).\left(3-\sqrt{5}\right)\)

\(2.\left(9-5\right)\)

\(2.4=8\)

Chúc bạn học tốt !!!

19 tháng 7 2020

a. Sửa đề: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)

biến đổi vế trái :
ta có :\(\left(3+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3^2-\left(\sqrt{5}\right)^2}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

=2(\(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\))

=2(\(\sqrt{5}+5-\sqrt{5}-1\))

=2.4=8=VP
=> đpcm

b. Đặt vế trái là A
ta có \(A^2=\sqrt{2}+1-2\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\sqrt{2}-1\)

=\(2\sqrt{2}-2\)

=2\(\left(\sqrt{2}-1\right)\)

=> A=\(\sqrt{2\left(\sqrt{2}-1\right)}\)

vậy VT=VP =>đpcm

Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)

\(=\dfrac{\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{\sqrt{20}-2}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)

\(=\dfrac{\left(6+2\sqrt{5}\right)\left(\sqrt{5}-1\right)}{2\left(\sqrt{5}-1\right)}-\dfrac{\sqrt{5}}{2}\)

\(=\dfrac{6+2\sqrt{5}-\sqrt{5}}{2}\)

\(=\dfrac{6-\sqrt{5}}{2}\)

Ta có: \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+\sqrt{2}}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)\left(\sqrt{6}+1\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{\sqrt{2}\left(3\sqrt{6}+3+\sqrt{30}+\sqrt{5}\right)-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{6\sqrt{3}+3\sqrt{2}+2\sqrt{15}+\sqrt{10}-\sqrt{15}-\sqrt{5}}{\sqrt{2}\left(\sqrt{6}+1\right)}\)

\(=\dfrac{6\sqrt{3}+3\sqrt{2}+\sqrt{15}+\sqrt{10}-\sqrt{5}}{ }\)

Đề sai rồi bạn

19 tháng 8 2019

a, \(VT=\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)\left(\sqrt{20}-2\right)}{2}\)

\(=\frac{\sqrt{5-2\sqrt{5}+1}\left(3+\sqrt{5}\right)\left(2\sqrt{5}-2\right)}{2}\)

\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)2\left(\sqrt{5}-1\right)}{2}\)

\(=\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=18-6\sqrt{5}+6\sqrt{5}-10=8=VP\)

b, \(VT=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2\sqrt{5}\sqrt{3}+3}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)

\(=2\left(16-15\right)=2=VP\)