\(5.7^{2n+2}+2^{3n}⋮41\)với n là số tự nhiên
mong được mọi người giúp đỡ cảm ơn mọi người nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(C=\dfrac{2n-3}{n-2}=\dfrac{2n-4+1}{n-2}=2+\dfrac{1}{n-2}\)
\(C\in Z\Leftrightarrow\dfrac{1}{n-2}\in Z\Leftrightarrow n-2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow...\)
Gọi d là ước chung của 2n+5 và 2n+3
=> 2n+5 chia hết cho d và 2n+3 chia hết cho d
=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}
Do 2n+5 và 2n+3 lẻ => d lẻ => d=1
=> phân số trên tối giản với mọi n
Gọi d là \(ƯCLN\left(3n+2,2n+1\right)\)
Ta có : 2n+ 1 chia hết cho d ,3n+2 chia hết cho d
\(3\left(2n+1\right)-2\left(3n+2\right)\)chia hết cho
1 chia hết cho d
\(d=1\)
Vậy \(3n+2;2n+1\)là số nguyên tố cùng nhau với mọi số tự nhiên n
TL
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
HỌC TỐT Ạ
tỉ lệ cao là tự nhiên, một số người quá già không có khả năng sinh con họ ms nhân tạo để sinh
Câu 1:
const fi='dulieu.dat';
fo='thaythe.out';
var f1,f2:text;
a:array[1..100]of string;
n,d,i,vt:integer;
begin
assign(f1,fi); reset(f1);
assign(f2,fo); rewrite(f2);
n:=0;
while not eof(f1) do
begin
n:=n+1;
readln(f1,a[n]);
end;
for i:=1 to n do
begin
d:=length(a[i]);
vt:=pos('anh',a[i]);
while vt<>0 do
begin
delete(a[i],vt,3);
insert('em',a[i],vt);
vt:=pos('anh',a[i]);
end;
end;
for i:=1 to n do
writeln(f2,a[i]);
close(f1);
close(f2);
end.
Câu 2:
uses crt;
const fi='mang.inp';
fo='sapxep.out';
var f1,f2:text;
a:array[1..100]of integer;
i,n,tam,j:integer;
begin
clrscr;
assign(f1,fi); rewrite(f1);
assign(f2,fo); rewrite(f2);
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
for i:=1 to n do
write(f1,a[i]:4);
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then
begin
tam:=a[i];
a[i]:=a[j];
a[j]:=tam;
end;
for i:=1 to n do
write(f2,a[i]:4);
close(f1);
close(f2);
end.
Đặt \(A=5\cdot7^{2\left(n+1\right)}+2^{3n}=5\cdot49^{n+1}+8^n=5\left(41+8\right)^{n+1}+8^n\)
Áp dụng công thức nhị thức Newton, ta có:
\(\left(41+8\right)^{n+1}=41^{n+1}+\left(n+1\right)\cdot41^n\cdot8+\dfrac{n\left(n+1\right)}{2}\cdot41^{n-1}\cdot8^2+...+\left(n+1\right)\cdot41\cdot8^n+8^{n+1}\)
Vậy \(A=5\left[41^{n+1}+\left(n+1\right)\cdot41^n\cdot8+..+\left(n+1\right)\cdot41\cdot8^n+8^{n+1}\right]+8^n\)
\(\Rightarrow A=5\left[41^{n+1}\left(n+1\right)\cdot41^n\cdot8+...+\left(n+1\right)\cdot41\cdot8^n\right]+5\cdot8^{n+1}+8^n\)
Đặt \(B=41^{n+1}\left(n+1\right)\cdot41^n\cdot8+...+\left(n+1\right)\cdot41\cdot8^n\)
\(\Rightarrow B⋮41\)
Đặt \(C=5\cdot8^{n+1}+8^n=8^n\left(5\cdot8+1\right)=8^n\cdot41\)
\(\Rightarrow C⋮41\)
Mà \(A=B+C\Rightarrow A⋮41\)
\(\RightarrowĐPCM\)