\(\dfrac{101+100+99+...+2+1}{101-100+99-98+...+2-1+1}\)
Mọi người giải hộ em nha !!!!!! Cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+2-1}\) (1)
Đặt A = 101 + 100 + 99 + 98 + ... + 1
Số số hạng của tổng A là :
(101 - 1) : 1 + 1 = 101 (số hạng)
Suy ra : A = (101 + 1) x 101 : 2 = 5151
Đặt B = 101 - 100 + 99 - 98 + ... + 3 - 2 + 1 (Mẫu số sai đề)
B = (101 - 100) + (99 - 98) + ... + (3 - 2) + 1 (Có : (101 - 3) : 2 + 1 = 50 cặp)
B = 1 + 1 + ... + 1 + 1 (Có : 50 + 1 = 51 số hạng 1)
B = 1 x 51
B = 51
Thay A,B vào (1), ta được :
\(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+2-1}\) = \(\dfrac{5151}{51}\)= 101
* Mẫu số sai đề
Gọi \(101+100+99+98+...+3+2+1\) là \(A\)
Gọi \(101-100+99-98+...+3-2+1\) là \(B\)
Ta có:
\(A=1+2+3+...+98+99+100+101\\ =\dfrac{101\cdot\left(101+1\right)}{2}\\ =\dfrac{101\cdot102}{2}\\ =5151\)
\(B=101-100+99-98+...+3-2+1\\ =\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\\ =1+1+...+1+1\)
(có 51 số hạng 1) \(=51\cdot1\\ =51\) \(\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}=\dfrac{A}{B}=\dfrac{5151}{51}=101\)\(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}.\)
\(A=\dfrac{\left[\dfrac{\left(101-1\right)}{1}+1\right]\left[\dfrac{101+1}{2}\right]}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}.\)
\(A=\dfrac{101.51}{1+1+1+...+1+1}\) (có 51 số 1).
\(A=\dfrac{5151}{51}=101.\)
Vậy \(A=101.\)
Ta có:
A = \(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+3-2+1}\)
= \(\dfrac{101+\left(100+1\right)+\left(99+2\right)+...+\left(51+50\right)}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
= \(\dfrac{101+101+101+...+101}{1+1+1+...+1}\) (51 số 101 và 51 số 1)
= \(\dfrac{101.51}{51}\)
= 101
Vậy A = 101
a) \(A=\dfrac{3737.43-4343.37}{2+4+6+...+2018}\)
\(\Leftrightarrow A=\dfrac{3737.43-43.101.37}{2+4+6+...+2018}\)
\(\Leftrightarrow A=\dfrac{3737.43-43.3737}{2+4+6+...+2018}\)
\(\Leftrightarrow A=\dfrac{0}{2+4+6+...+2018}\)
\(\Leftrightarrow A=0\)
b) \(B=\dfrac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(\Leftrightarrow B=\dfrac{\left(101+1\right).101:2}{\left(101+99+97+...+1\right)-\left(100+98+96+...+2\right)}\)
\(\Leftrightarrow B=\dfrac{5151}{\left[\left(101+1\right).51:2\right]-\left[\left(100+2\right).50:2\right]}\)
\(\Leftrightarrow B=\dfrac{5151}{2601-2550}\)
\(\Leftrightarrow B=\dfrac{5151}{51}\)
\(\Leftrightarrow B=101\)
Tính phần tử số:
101+100+99+...+2+1
=\(\dfrac{\left(101+1\right).101}{2}\)=5151
Phần mẫu số:
101-100+99-98+...+2-1+1
=1+1+...+1+1 ( 51 số 1 )
= 51
Thay vào biểu thức, ta có:
\(\dfrac{5151}{51}\)=101
Chúc bạn học tốt nhé :))!!
Cảm ơn nha