Chứng tỏ tích 2 số tự nhiên không phải là số chính phương ( 2 số khác 0 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài
+ Nếu a > 1 => a = xy.zk... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)
=> số ước của a là: (y + 1).(k + 1)... là số lẻ
=> y + 1 là số lẻ; k + 1 là số lẻ; ...
=> y chẵn; k chẵn; ...
=> xy; zk; ... là số chính phương
Mà số chính phương x số chính phương = số chính phương => a là số chính phương
Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương
Cau hoi tuong tu nhe
Ban chi can doi so 5 thanh so 3 roi lam
Tick nha
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
+ ta có số nguyên tố có số lượng ước là 2,đó 1 số chẵn,vậy số đó không thể là số nguyên tố=> số đó là hợp sỗ
nên ta có thể đặt n = p1^k1.p2^k2...pr^kr (phân tích ra thừa số nguyên tố)
số ước của n là (k1 + 1)(k2 + 1)..(kr + 1)
theo đề bài thì (k1 + 1)(k2 + 1)..(kr + 1) là số lẽ
=> k1,k2,..kr tất cả phải hoàn toàn là số chẵn,bởi vì chỉ cần một ki lẻ thì toàn bộ tích đó là số lẽ
nghĩa là k1 = 2k1',k2 = 2k2',...,kr = 2kr'
suy ra n = [p1^k1'.p2^k2'...prkr']^2 là 1 số chính phương
A = [n.(n+3)] . [(n+1).(n+2)]
= (n^2+3n).(n^2+3n+2) > (n^2+3n)^2 (1)
Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2 (2)
Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2
=> A ko phải là số chính phương
Tk mk nha
Gọi hai số đó là n và n + 1 (n \(\in\) N*)
Ta có :
n . (n + 1) = n2 + n không là số chính phương
Vậy tích 2 số tự nhiên không phải là số chính phương