Cho tam giac ABC co 3 goc nhon. Goi O la trung diem cua BC. Goi D la diem doi xung cua A qua BC ; E la diem doi xung cua A qua O. Chung minh rang BCDE la hinh thang can.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(MA=MB\) ( M là trung điểm của BC )
\(HM=HD\) ( D đối xứng với H qua M )
\(\Rightarrow\) BHCD là hình bình hành
\(\Rightarrow BD//CH\) mà \(CH\perp AB\)
\(\Rightarrow BD\perp AB\) hay \(\Delta ABD\) vuông tại B
tương tự ta cũng chứng minh đc: \(\Delta ACD\) vuông tại C
b) Ta có: \(IA=ID=\dfrac{AD}{2}\) ( I là trung điểm của AD )
\(\Delta ABD\) vuông tại B có BI là đường trung tuyến ứng với cạnh huyền AD nên:
\(BI=\dfrac{AD}{2}\)
Tương tự: \(CI=\dfrac{AD}{2}\)
Vậy \(IA=IB=IC=ID\)
Câu 2:
a: Xét tứ giác ADBH có AB cắt DH tại trung điểm của mỗi đường
nên ADBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên ADBH là hình chữ nhật
b: Để ADBH là hình vuông thì BA là tia phân giác của góc DBH
=>\(\widehat{ABC}=45^0\)
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: \(ED=\dfrac{BC}{2}=3\left(cm\right)\)
a: Xét tứ giác ABDC có
O là trung điểm của AD
O là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔADN có
O là trung điểm của AD
M là trung điểm của AN
Do đó: OM là đườg trung bình
=>OM=1/2ND
Gọi H là giao điểm của AD và BC
=>H là trung điểm của AD
Xét ΔADE có
H là trung điểm của AD
O là trung điểm của AE
Do đó: HO là đường trung bình
=>HO//DE
hay DE//BC
Xét tứ giác ABEC có
O là trung điểm của AE
O là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: BE=AC(1)
Xét ΔACD có
CH là đường cao
CH là đường trung tuyến
Do đó ΔACD cân tại C
=>CA=CD(2)
Từ (1) và (2) suy ra BE=CD
Xét tứ giác BCED có BC//ED
nên BCED là hình thang
mà BE=CD
nên BCED là hình thang cân