Bài 6. (3 điểm) Cho tam giác ABC vuông tại A có AB=6cm,BC =10cm.
a) Giải tam giác ABC.
b) Kẻ đường cao AH. Tính độ daif AH, HC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD < AC , AI vuong góc BD . Gọi K là giao điểm của HI và AC. Chứng minh: BI .BD = BH.BC và KI .KH = KD.KC.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
4 tháng 5 2021
a, Ta có : ∆ ABC vuông tại A ( gt)
-> BC^2 = AB^2 + AC^2 ( đ/lí Pytago )
-> AC^2 = BC^2 - AB^2
Mà BC = 10 cm ( gt ) ; AB= 6 cm ( gt)
Nên AC^2 = 10^2 - 6^2
-> AC^2 = 100- 36
-> AC^2 = 64
-> AC = 8 cm
11 tháng 4 2023
Xet ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
=>BC=DE
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AI là đường cao ứng với cạnh huyền BD, ta được:
\(BI\cdot BD=AB^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BI\cdot BD=BH\cdot BC\)