cho hing thang ABCD , co AB //CD va AC=BD. qua B ke duong thang song voi AC, cat duong thang DC tai E. chung minh rang:
a, ACB va EBC la hai tam giac bang nhau
b, BDE la tam giac can
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACB và ΔEBC có
\(\widehat{ACB}=\widehat{EBC}\)
BC chung
\(\widehat{ABC}=\widehat{ECB}\)
Do đó: ΔACB=ΔEBC
b: Ta có: ΔACB=ΔEBC
nên AC=EB
=>BE=BD
hay ΔBED cân tại B
c: Ta có: ΔBED cân tại B
nên \(\widehat{BED}=\widehat{BDC}\)
=>\(\widehat{BDC}=\widehat{ACD}\)
d: Xét ΔACD và ΔBDC có
AC=BD
\(\widehat{ACD}=\widehat{BDC}\)
CD chung
DO đó: ΔACD=ΔBDC
e: Ta có: ΔACD=ΔBDC
nên \(\widehat{DAC}=\widehat{DBC}\)
f: Ta có: ΔACD=ΔBDC
nên \(\widehat{ADC}=\widehat{BCD}\)
=>ABCD là hình thang cân
A) Xét tam giác DMB và tam giác MAN có : MA=MB ; góc MBD = góc MAN ( vì hai góc sole trong) ; góc AMN=góc BMD ( vì hai góc đối đỉnh) vậy tam giác DMB = tam giác MAN ( G-C-G) suy ra : MN=MD mà ta lại có MNsong song với BC và bằng 1/2 BC vậy suy ra : MN+MD=BC mà ta lại có MN song song với BC suy ra DN cũng song song với BC vậy Tứ giác BDNC là hình bình hành
B) Tứ giác BDNH là hình thang cân Do: DN song song với BH vậy tứ giác DNHB là (hình thang)* mà ta lại có : AN = DB ; AN=NH ( vì đường trung tuyến ứng với cạnh huyền) vậy DH = NH** từ (*) và (**) suy ra : tứ giác BDNH là hình thang cân
a) có AB// DC (gt)
mà E thuộc DC => AB // CE
=> \(\widehat{ABC}=\widehat{ECB}\)
có AC // BE (gt)
=>\(\widehat{ACB}=\widehat{EBC}\)
xét \(\Delta ABC\) và \(\Delta ECB\)
có BC là cạnh chung
\(\widehat{ABC}=\widehat{ECB}\) (cmt)
\(\widehat{ACB}=\widehat{EBC}\) (cmt)
=> \(\Delta ABC=\Delta ECB\) (gcg)
=>BE = CA ( 2 cạnh tương ứng )
b) có AC = BD ( gt)
mà BE = CA (cmt)
=> BD = BE ( = CA)
=>\(\Delta BDE\) là tam giác cân tại B