Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau sao cho :
a) Luôn có mặt số 1.
b) Luôn có mặt số 1 và số 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 là:
$5.A^4_6=1800$ (số)
b.
Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 mà không có 7 là:
$5.A^4_5=600$ (số)
Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 và 7 là:
$1800-600=1200$ (số)
gọi số tm yêu cầu là \(\overline{abcde}\)
a)Th1 giả sử abc,abd,abe,acd,ade,ace=1,2,3=> 2 số còn lại có 5.4 cách chọn=> có tất cả 6.3!.4.5=720 số
Th2 giả sử bcd=1,2,3;cde=1,2,3;bce=1,2,3,bde=1,2,3=>a khác 0=>a có 4 cách chọn và số còn lại có 4 cách chọn=>có tất cả 4.4.3!.4=384 cách
=> có tất cả 720+384 =1104 cách chọn số tm