Câu 1 : Tìm GTLN
a) \(A=\dfrac{2003}{\left(x-2\right)^2+\left(x-y\right)^6+3}\)
b) \(B=3-\left(2x+\dfrac{1}{3}\right)^6\)
c) \(C=\dfrac{x^{2016}+2017}{x^{2016}+2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy: \(f(x)=\frac{x^3}{1-3x+3x^2}\Rightarrow f(1-x)=\frac{(1-x)^3}{1-3(1-x)+3(1-x)^2}=\frac{(1-x)^3}{3x^2-3x+1}\)
\(\Rightarrow f(x)+f(1-x)=\frac{x^3}{1-3x+3x^2}+\frac{(1-x)^3}{3x^2-3x+1}=\frac{x^3+(1-x)^3}{3x^2-3x+1}=1\)
Do đó:
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=1\)
\(f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=1\)
............
\(f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=1\)
Cộng theo vế:
\(\Rightarrow A=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+f\left(\frac{3}{2017}\right)+...f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)\)
\(=\underbrace{1+1+1...+1}_{1008}=1008\)
Vì /2x+1/ ≥ 0
=> /2x+1/ + 2017 ≥ 2017
=> 2016/ /2x+1/ +2017 ≤ 2016/2017
Vậy Bmax = 2016/2017 khi /2x+1/ = 0 => 2x+1 =0 => 2x=-1
=> x = -1/2
a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)
\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)
\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow x+8-12+20x=0\)
\(\Leftrightarrow21x-4=0\)
\(\Leftrightarrow21x=4\)
\(\Leftrightarrow x=\dfrac{4}{21}\)
Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)
Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!
a: \(\left(x-2\right)^2+\left(x-y\right)^6+3\ge3\)
\(\Leftrightarrow A=\dfrac{2003}{\left(x-2\right)^2+\left(x-y\right)^6+3}\le\dfrac{2003}{3}\)
Dấu '=' xảy ra khi x=y=2
b: \(B=-\left(2x+\dfrac{1}{3}\right)^6+3\le3\forall x\)
Dấu '=' xảy ra khi x=-1/6
c: \(C=\dfrac{x^{2016}+2015+2}{x^{2016}+2015}=1+\dfrac{2}{x^{2016}+2015}\le\dfrac{2}{2015}+1=\dfrac{2017}{2015}\)
Dấu '=' xảy ra khi x=0