Tính nhanh:
A = \(\dfrac{1}{1975}\left(\dfrac{2}{1975}-1\right)+\left(1-\dfrac{2}{1945}\right)+\dfrac{1974}{1975}.\dfrac{1945}{1946}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : P = \(\dfrac{1}{1975}\left(\dfrac{2}{1945}-1\right)-\dfrac{1}{1945}\left(1-\dfrac{2}{1975}\right)+\dfrac{1974}{1975}.\dfrac{1946}{1945}\)
\(-\dfrac{3}{1975.1945}\)
= \(\dfrac{2}{1975.1945}-\dfrac{1}{1975}-\dfrac{1}{1945}+\dfrac{2}{1975.1945}+\dfrac{1974}{1975}.\dfrac{1946}{1945}\)
\(-\dfrac{3}{1975.1945}\)
= \(\dfrac{2+2+1974.1946-3-1975-1945}{1975.1945}\)
= \(\dfrac{2+2+1974.1946-3-1975-1945}{1975.1945}\)
= \(\dfrac{1973}{1975}\)
a) \(A=85^2-45^2+75^2-35^2+65^2-25^2+55^2-15^2\)
\(A=\left(85-45\right)\left(85+45\right)+....+\left(55-15\right)\left(55+15\right)\)
\(A=40.130+40.110+40.90+40.70\)
\(A=40.\left(130+110+90+70\right)=40.400=16000\)
b) \(B=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2011-2012\right)\left(2011+2012\right)\)
\(B=-3-7-11-...-4023\)
\(B=-\left(3+7+11+...+4023\right)\)
\(B=-\dfrac{\left(3+4023\right)\left[\dfrac{\left(4023-3\right)}{4}+1\right]}{2}=2025078\)
=\(\frac{1}{1975}.\frac{2}{1945}-\frac{1}{1975}-\frac{1}{1975}-\frac{1}{1975}.\frac{2}{1975}-\frac{1974}{1975}.\frac{1946}{1945}-\frac{3}{1975.1945}\)
=\(\frac{1}{1975}.\left(\frac{2}{1945}-1-1-\frac{2}{1975}\right)-\frac{1974.1946}{1975.1945}-\frac{3}{1975.1945}\)
=\(\frac{1}{1975}.\left(\frac{2}{1945}-\frac{2}{1975}-2\right)-\frac{1974.1946-3}{1975.1945}\)
Thiếu đề rồi!
như nào hả cậu