Viết các kết quả dưới đây dưới dạng một lũy thừa
a) 27^6 : 9^3
b) 4^20 : 2^15
c) 24^n : 2^2n
d) 64^4 x 16^5 : 4^20
e) 32^4 : 8^6
Bài này mik cần khá gấp nên các bạn lm nhanh hộ mik nha :] ( Mik sẽ tick hết cho các bạn ko cần phải lo )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,125^5:25^3=\left(5^3\right)^5:\left(5^2\right)^3=5^{15-6}=5^9\)
\(b,27^6:9^3=\left(3^3\right)^6:\left(3^2\right)^3=3^{18-6}=3^{12}\)
\(c,4^{20}:2^{15}=\left(2^2\right)^{20}:2^{15}=2^{40-15}=2^{25}\)
\(d,24^n:2^{2n}=4^n.6^n:4^n=6^n\)
\(e,64^4.16^5:4^{20}=\left(2^6\right)^4.\left(2^4\right)^5:\left(2^2\right)^{20}=2^{24+20-40}=2^4=16\)
a) 3\(^x\) . 3 = 243
3\(^x\) = 81
3\(^x\) = 3\(^4\)
=> = 4
b) 64 . 4\(^x\) = 16\(^8\)
4\(^3\) . 4\(^x\) = 4\(^{16}\)
4\(^{3+x}\) = 4\(^{16}\)
=> 3 + x = 16
x = 13
Học tốt
Đúng thì t cho mk
a) 3^x . 3 = 243
243 = 3^5
3^4 . 3 = 234
nên x = 4
b) 64 . 4^x = 16^8
4^3 . 4^x = ( 4^2)^8
4^3 . 4^x = 4^16
4^(4+x) = 4^16
x = 4^16 : 4^4
x = 4^12
x = 12
a) \(125^7:25^4=\left(5^3\right)^7:\left(5^2\right)^4=5^{21}:5^8=5^{13}\)
b) \(27^8:9^5=\left(3^3\right)^8:\left(3^2\right)^5=3^{24}:3^{10}=3^{14}\)
c) \(4^{20}:2^{30}=\left(2^2\right)^{20}:2^{30}=2^{40}:2^{30}=2^{10}\)
d) \(28^n:2^n=28^n:4^n=7^n\)
e) \(64^5.16^6:4^{20}=2^{30}.2^{24}:2^{10}=2^{54}:2^{40}=2^{14}\)
f) \(32^4:8^6=2^{20}:2^{18}=2^2\)
\(a.125^7:25^4=5^{21}:5^8=5^{13}\)
\(b.27^8:9^5=3^{24}:3^{10}=3^{14}\)
\(c.4^{20}:2^{30}=2^{40}:2^{30}=2^{10}\)
\(d.28^n:2^{2n}=28^n:4^n=7n\)
\(\hept{\begin{cases}e.64^5.16^6:4^{20}=4^{15}.4^{12}:4^{20}=4^7\\f.32^4:8^6=2^{20}:2^{18}=2^2\end{cases}}\)
a125^5:25^3=(5^3)^5:(5^2)^3=5^15:5^6=5^9
b27^6:9^3=(3^3)^6:(3^2)^3=3^18:3^6=3^13
c 4^20:2^15=(2^2)^20:2^15=2^40:2^15=2^25
d24^n:2^2.n=24^n:(2^2)^n=24^n:4^n=(24:4)^n=6^n
e 64^4 . 16^5:4^20=(2^6)^4 . (2^4)^5 :(2^2)^20=2^24 . 2^20:2^40=2^4
g 32^4:8^6=(2^5)^4:(2^3)^6=2^20:2^18=2^2
a, \(125^5:25^3=\left(5^3\right)^5:\left(5^2\right)^3=5^{15}:5^6=5^9\)
b, \(27^6:9^3=\left(3^3\right)^6:\left(3^2\right)^3=3^{18}:3^6=3^{12}\)
c, \(4^{20}:2^{15}=\left(2^2\right)^{20}:2^{15}=2^{40}:2^{15}=2^{25}\)
d, \(24^n:2^{2.n}=2^n.12^n:2^n.2^n=12^n:2^n=2^n.6^n:2^n=6^n\)
e, \(64^4.16^5:4^{20}=4^{12}.4^{10}:4^{20}=4^{12+10-20}=4^2\)
g, \(32^4:8^6=8^4.4^4:8^4.8^2=4^4:4^2.2^2=4^2.2^2=2^4.2^2=2^6\)
a) \(64^2\cdot32^4=2^{16}\cdot2^{20}=2^{36}\)
b) \(11^{16}\cdot5^{24}=\left(11^4\right)^4\cdot\left(5^6\right)^4=\left(11^4\cdot5^6\right)^4\)
a)642.324=(26)2.(25)4=212.220=232
b)1116.524(ko phân tích đc nữa)
a)27^6:9^3=(3^3)^6:(3^2)^3=3^18:3^6=3^12
b)4^20:2^15=(2^2)^20:2^15=2^40:2^15=2^25
a) 27^6 : 9^3
= ( 3^3)^6 : ( 3^2)^3
= 3^18 : 3^6
= 3^12
b) 4^20 : 2^15
= ( 2^2)^20 : 2^15
= 2^40 : 2^15
= 2^25
d) 64^4 x 16^5 : 4^20
= (4^3)^4 x (4^2)^5 : 4^20
= 4^12 x 4^10 : 4^20
= 4^22 : 4^20
= 4^2