MỌI NGƯỜI ƠI GIÚP MÌNH VỚI MÌNH CẦN GẤP 🙏🙏🙏
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có |5x-5012| = |-5x+5012| >_ -5x +5012.Dấu "=" khi -5x+5012>0
| 5x+300|>_ 5x+300.Dấu "=" khi 5x+300>0
=> |-5x+5012| + |5x+300| >_ -5x+5012 +5x + 300
=> A >_ 5312
Dấu "=" khi -5x+5012>0 => x<5012/5
5x+300> 0 => x>-60
Vậy Min A = 5312 khi -60<x<5012/5
a)TXĐ:\(D=R\)
b)\(f\left(\dfrac{2}{3}\right)=\left(\dfrac{2}{3}\right)^2+\dfrac{2}{3}-2=-\dfrac{8}{9}\)
\(f\left(3\right)=3-2.3=-3\)
a/
\(\frac{72}{\left(x-2\right)^2}=8\left(x\ne2\right)\Rightarrow\left(x-2\right)^2=9=3^2\)
\(\Rightarrow\left|x-2\right|=3\)
+ Nếu \(x-2\ge0\Rightarrow x\ge2\Rightarrow x-2=3\Rightarrow x=5\) (thoả mãn đk \(x\ge2\) )
+ Nếu \(x-2< 0\Rightarrow x< 2\Rightarrow2-x=3\Rightarrow x=-1\) (Thoả mãn đk \(x< 2\) )
b/
\(75-5\left(x-3\right)^3=700\Rightarrow\left(x-3\right)^3=-125=\left(-5\right)^3\)
\(\Rightarrow x-3=-5\Rightarrow x=-2\)
- Kinh Dương Vương(涇陽王): 2879 - 2794 TCN (số năm trị vì là ước đoán). Huý là Lộc Tục (祿續).
- Hùng Hiền vương(雄賢王), còn được gọi là Lạc Long Quân (駱龍君 hoặc 雒龍君 hoặc 貉龍君): 2793 - 2525 TCN. Huý là Sùng Lãm (崇纜).
- Hùng Lân vương (雄麟王): 2524 - 2253 TCN
- Hùng Việp vương (雄曄王): 2252 - 1913 TCN
- Hùng Hi vương (雄犧王): 1912 - 1713 TCN (phần bên trái chữ "hi" 犧 là bộ "ngưu" 牛)
- Hùng Huy vương (雄暉王): 1712 - 1632 TCN
- Hùng Chiêu vương (雄昭王): 1631 - 1432 TCN
- Hùng Vĩ vương (雄暐王): 1431 - 1332 TCN
- Hùng Định vương (雄定王): 1331 - 1252 TCN
- Hùng Hi vương (雄曦王): 1251 - 1162 TCN (phần bên trái chữ "hi" 犧 là bộ "nhật" 日)
- Hùng Trinh vương (雄楨王): 1161 - 1055 TCN
- Hùng Vũ vương (雄武王): 1054 - 969 TCN
- Hùng Việt vương (雄越王): 968 - 854 TCN
- Hùng Anh vương (雄英王): 853 - 755 TCN
- Hùng Triêu vương (雄朝王): 754 - 661 TCN
- Hùng Tạo vương (雄造王): 660 - 569 TCN
- Hùng Nghị vương (雄毅王): 568 - 409 TCN
- Hùng Duệ vương (雄睿王): 408 - 258 TCN
Người ta không nói rõ chỉ biết là 18 ông thì đều lấy hiệu là Hùng vương hết
#include <bits/stdc++.h>
using namespace std;
double a,b;
int main()
{
cin>>a>>b;
cout<<(a+b)*2;
return 0;
}
a. x2 - 2x
⇔ x(x - 2)
b. 3x - 6y
⇔ 3(x - 2y)
c. 5(x + 3y) - 15x(x + 3y)
⇔ (5 - 15x)(x + 3y)
d. 3(x - y) - 5x(y - x)
⇔ 3(x - y) + 5x(x - y)
⇔ (3 + 5x)(x - y)