K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

\(\left\{{}\begin{matrix}x^4+3=4y\\y^4+3=4x\end{matrix}\right.\) giagỉ hệ pt

9 tháng 10 2017

a) vì ab > 0 nên chia cả hai vế Bất đẳng thức cho \(\sqrt{ab}\) ta được

\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le1\)

Áp dụng Bất đẳng thức Cauchy cho hai số

\(\Rightarrow\sqrt{\dfrac{c}{b}\left(\dfrac{a-c}{a}\right)}+\sqrt{\dfrac{c}{a}\left(\dfrac{b-c}{b}\right)}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)=1\)

vậy nên ta có đpcm

10 tháng 10 2017

\(\frac{2005}{\sqrt{2006} }+\frac{2006}{\sqrt{2005} }>\sqrt{2005}+\sqrt{2006} \)

<=>\(2005\sqrt{2005}+2006\sqrt{2006}>2005\sqrt{2006}+2006\sqrt{2005} \)

<=>\(\sqrt{2006}<\sqrt{2005} \)

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Câu 1. Cho biểu thức \(A=\dfrac{2}{\sqrt{x}-2}\) và \(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{4\sqrt{x}}{x-4}\) với x ≥ 0 và x ≠ 4.1)  Tính giá trị biểu thức A khi x = 9.2) Chứng minh \(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}.\)3) Tìm x để \(A+B=\dfrac{3x}{\sqrt{x}-2}\).Câu 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:Trong kì thi tuyển sinh vào lớp 10, hai trường A và B có tất cả 750 học sinh dự thi. Trong số học sinh trường A...
Đọc tiếp

undefined

Câu 1.

Cho biểu thức \(A=\dfrac{2}{\sqrt{x}-2}\) và \(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{4\sqrt{x}}{x-4}\) với x ≥ 0 và x ≠ 4.

1)  Tính giá trị biểu thức A khi x = 9.

2) Chứng minh \(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}.\)

3) Tìm x để \(A+B=\dfrac{3x}{\sqrt{x}-2}\).

Câu 2. 

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Trong kì thi tuyển sinh vào lớp 10, hai trường A và B có tất cả 750 học sinh dự thi. Trong số học sinh trường A dự thi có 80% số học sinh trúng tuyển, còn trong số học sinh trường B dự thi có 70% số học sinh trúng tuyển. Biết tổng số học sinh trúng tuyển của cả hai trường là 560 học sinh. Tính số học sinh dự thi của mỗi trường?

Câu 3.

1) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{2}{x-y}+\sqrt{y+1}=4\\\dfrac{1}{x-y}-3\sqrt{y+1}=-5\end{matrix}\right.\)

2) Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m - 1)x - m2 + 2m (m là tham số).

a) Tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) khi m = 2.

b) Tìm m để (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ x1; x2 là hai số đối nhau.

Câu 4.

Cho nửa đường tròn (O; R) đường kính AB và điểm M thuộc nửa đường tròn đó (M khác A và B). Trên dây BM lấy điểm N (N khác B và M), tia AN cắt nửa đường tròn (O) tại điểm thứ hai là P. Tia AM và tia BP cắt nhau tại Q.

a) Chứng minh bốn điểm M, N, P, Q cùng thuộc một đường tròn.

b) Chứng minh tam giác MAB đồng dạng với tam giác MNQ.

c) Chứng minh MO là tiếp tuyến của đường tròn ngoại tiếp tam giác MNQ.

d) Dựng hình bình hành ANBC. Chứng minh \(QB=QC.\sin\widehat{QPM.}\)

1
19 tháng 4 2021

tick cho em la em lam lien

NV
17 tháng 12 2018

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)

\(\Leftrightarrow a\left(ab+ac+bc\right)+\left(b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow a\left(ab+ac+bc-bc\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow a^2\left(b+c\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow\left(a^2+ab+ac+bc\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)

- Nếu \(a=-c\Rightarrow a^{2006}=c^{2006}\Rightarrow c^{2006}-a^{2006}=0\Rightarrow P=0\)

- Nếu \(a=-b\Rightarrow a^{2004}=b^{2004}\Rightarrow a^{2004}-b^{2004}=0\Rightarrow P=0\)

- Nếu \(b=-c\Rightarrow b^{2005}=-c^{2005}\Rightarrow b^{2005}+c^{2005}=0\Rightarrow P=0\)

Vậy \(P=0\)

11 tháng 12 2016

1/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)

\(\Leftrightarrow\frac{a+b+c}{abc}=0\)(đúng)

Vậy ta có ĐPCM

11 tháng 12 2016

2/ \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2006}-\sqrt{2005}\)

\(=\sqrt{2006}-1\)

17 tháng 11 2021

\(S=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

\(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{17}}\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(1+4^2\right)}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\left(1\right)\)\(\left(bunhia\right)\)

\(tương-tự\Rightarrow\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\left(2\right)\)

\(\sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}+b+\dfrac{4}{c}+c+\dfrac{4}{a}\right)\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left[16a+\dfrac{4}{a}+16b+\dfrac{4}{b}+16c+\dfrac{4}{c}-15\left(a+b+c\right)\right]\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left[2\sqrt{16a.\dfrac{4}{a}}+2\sqrt{16b.\dfrac{4}{b}}+2\sqrt{16c.\dfrac{4}{c}}-15.\dfrac{3}{2}\right]\left(am-gm\right)\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left(16+16+16-\dfrac{45}{2}\right)=\dfrac{3\sqrt{17}}{2}\)

\(\Rightarrow MinS=\dfrac{3\sqrt{17}}{2}\Leftrightarrow a=b=c=\dfrac{1}{2}\)

 

 

 

\(=\left(1^2+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)\ge\left(1a+4.\dfrac{1}{b}\right)^2\\ \Rightarrow\sqrt{a^2+\dfrac{1}{vb^2}}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\) 

Tương tự

\(\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\\ \sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\\ Do.đó:\\ Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)\ge\dfrac{1}{\sqrt{17}}\\ \left(a+b+c+\dfrac{36}{a+b+c}\right)\) 

\(=\dfrac{1}{\sqrt{17}}\\ \left[a+b+c+\dfrac{9}{4\left(a+b+c\right)}+\dfrac{135}{4\left(a+b+c\right)}\right]\\ \ge\dfrac{3\sqrt{17}}{2}\)

5 tháng 2 2022

Cái thứ nhất là tại sao có cái đầu tiên =)) cái thứ 2 dấu bằng xảy ra khi nào :V

7 tháng 12 2021

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

8 tháng 12 2021

\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế