1: \(15-\left\{2\cdot\left[x-\left(2x-4\right)\cdot5\right]\cdot3\cdot\left(x+1\right)\right\}=12-x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
\(=\dfrac{11.3^{29}-\left(3^2\right)^{15}}{2^2.3^{28}}\)
\(=\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\)
\(=\dfrac{3^{29}\left(11-3\right)}{2^2.3^{28}}\)
\(=\dfrac{3^{29}.2^3}{2^2.3^{28}}\)
\(=\dfrac{3.2}{1.1}=6\)
Ta có :
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{2014.2016}\right)\)
\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{4060225}{2014.2016}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{2015.2015}{2014.2016}\)
\(=\frac{2.3.4....2015}{1.2.3....2014}.\frac{2.3.4....2015}{3.4.5....2016}\)
\(=\frac{2015}{1}.\frac{2}{2016}\)
\(=2015.\frac{1}{1008}=\frac{2015}{1008}\)
\(\Rightarrow\frac{2015}{1008}=\frac{x}{1008}\Rightarrow x=2015\)
Vậy \(x=2015\)
Ủng hộ mk nha !!! ^_^
Biến đổi thừa số tổng quát: \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).
Do đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\), \(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\), \(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\),..., \(1+\dfrac{1}{2018.2020}=\dfrac{2019^2}{2018.2020}\), \(1+\dfrac{1}{2019.2021}=\dfrac{2020^2}{2019.2021}\). Từ đó suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}.\dfrac{6^2}{5.7}...\dfrac{2019^2}{2018.2020}.\dfrac{2020^2}{2019.2021}\)
\(=\dfrac{2.2020}{2021}=\dfrac{4040}{2021}\)
\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)
\(15-\left\{2.\left[\left(2x-4\right).5\right].3.\left(x+1\right)\right\}=12-x\)
\(15-\left\{\left[10x-20\right].6.\left(x+1\right)\right\}=12-x\)
\(15-\left\{10x-20.6x+1\right\}=12-x\)
\(15-\left\{10x-120x+1\right\}=12-x\)
\(15-\left(-110x\right)-1=12-x\)
\(15+110x-1=12-x\)
\(110x+x=12-15+1\)
\(111x=-2\)
\(x=\dfrac{-2}{111}\)