K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

\(A=\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)

Ta thấy:

\(\left\{{}\begin{matrix}21\left|4x+6\right|+33>0\\3\left|4x+6\right|+5>0\end{matrix}\right.\)

Vậy \(A>0\)

\(MAX_A\Rightarrow MIN_{3\left|4x+6\right|+5}\)

\(\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|+5\ge5\)

Dấu "=" xảy ra khi:

\(3\left|4x+6\right|=0\Rightarrow4x=-6\Rightarrow x=-\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}21\left|4x+6\right|=0\\3\left|4x+6\right|=0\end{matrix}\right.\)

Vậy \(MIN_A=\dfrac{33}{5}\)

16 tháng 8 2017

Cách làm của Phúc khá phức tạp bạn có thể tham khảo cách của mình nha!

Với mọi giá trị của \(x\in R\) ta có:

\(\left\{{}\begin{matrix}21\left|4x+6\right|+33\ge33\\3\left|4x+6\right|+5\ge5\end{matrix}\right.\)

\(\Rightarrow\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\ge\dfrac{33}{5}\)

Để \(\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}=\dfrac{33}{5}\) thì

\(99\left|4x+6\right|+165=105\left|4x+6\right|+165\)

\(\Rightarrow105\left|4x+6\right|-99\left|4x+6\right|=0\)

\(\Rightarrow\left|4x+6\right|=0\Rightarrow x=\dfrac{3}{2}\)

Vậy...........

Chúc bạn học tốt!!!

16 tháng 8 2017

a)A=|\(x+5\)|\(+2-x\)

=> \(x+5=0\)

\(2-x=0\)

=>\(x=-5\)

\(x=2\)

Gía trị nhỏ nhất của A là :

|-5+5|=2-2

=|0|=0

=>=0

Vậy .....................

17 tháng 8 2017

bn có thể giải dễ hiểu hơn một chút ko ?

23 tháng 3 2017

Để mình giúp nha

\(A=|x-2013|+|x-2014|+|x-2015|\)

\(=|x-2013|+|2014-x|+2015-x|\)

\(\ge|x-2013+2015-x|+|2014-x|\)

\(\ge2+|2014-x|=2\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

23 tháng 3 2017

Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|

Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2

Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)

|x−2014|\(\ge0\)

Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)

|x−2013|+|x−2014|+|x−2015|\(\ge\)2

Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014

27 tháng 11 2022

\(P=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3+x\right)\left(2x+3-x\right)}{3\left(x+3\right)\left(x+5\right)}\)

\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\cdot5\left(x+1\right)}-\dfrac{3\left(x+1\right)\left(x+3\right)}{3\left(x+3\right)\left(x+5\right)}\)

\(=\dfrac{5\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{\left(x+5\right)}{x+1}-\dfrac{x+1}{x+5}\)

\(=\dfrac{5x^2+30x+45+x^2+10x+25-x^2-2x-1}{\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{5x^2+38x+69}{\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{5x^2+38x+69}{x^2+6x+5}\)

Để P là số nguyên thì \(5x^2+30x+25+8x+34⋮x^2+6x+5\)

=>\(8x+34⋮x^2+6x+5\)

=>\(\left\{{}\begin{matrix}8x+34⋮x+1\\8x+34⋮x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x+8+26⋮x+1\\8x+40-6⋮x+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+1\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\\x+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\end{matrix}\right.\)

=>\(x\in\left\{-2;1\right\}\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

2 tháng 4 2019

X=2013 và Y=2014 thỉ biểu thức đó có giá trị nn

2 tháng 4 2019

thi ban tim ho mk

4 tháng 9 2017

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)