Cho tam giác ABC cân tại A, đường cao BH. Chứng minh rằng BAC=2CBH.
(mọi người giúp em với ak. Cần gấp😓😥😢)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC
mà AC=10cm => AB=10cm
Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H
=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)
dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm
Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC
=> BH=CH=6cm
b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)
Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)
Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)
từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)
Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)
=> AK=AD
Chứng minh tam giác ABH = tam giác ACM vậy M ở đâu bạn?
a,xét ▲ ACE và▲AKE có:gócACE= gócAKE=90
chungAE
góc CAE=gócKAE(tia phân giác AE của góc CAB)
⇒ΔACE=ΔAKE(c.h-g.n)→AC=AK
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔAHB=ΔAKC
b: góc ABH+góc EBC=góc ABC
góc ACK+góc ECB=góc ACB
mà góc ABH=góc ACK;góc ABC=góc ACB
nên góc EBC=góc ECB
=>ΔEBC cân tại E
c: AB=AC
EB=EC
=>AE là trung trực của BC
=>AE vuông góc với BC
Câu 1 (Bạn tự vẽ hình giùm)
a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)
\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)
BD = DC (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)
b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Mình xin chỉnh lại đề một chút: AD \(\perp\)BC tại D
Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)
Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)
=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)
Bạn tự vẽ hình nhé.
K là giao điểm của 2 đường phân giác BD và CE => AK là phân giác của góc A (Vì 3 đường phân giác đồng quy tại 1 điểm)
Mà tam giác ABC cân tại A => Phân giác góc A cũng chính là trung tuyến => AK qua trung điểm của BC
(Hoặc bạn có thể chứng minh cụ thể như sau: Kéo dài AK cắt BC tại M
Xét 2 t.g AMB và AMC có:
- AM chung
- g. BAM = CAM (vì AK là phân giác; K thuộc AM)
-AB = AC (2 cạnh bên của tam giác cân ABC)
=> t.g AMB = t. AMC (C.G.C) => MB = MC => M là trung điểm của BC.)
Sửa đề:
Cho tam giác ABC cân tại A, đường cao BH. Chứng minh
rằng \(\widehat{BAC}=\widehat{CBH}\).
Bạn xem lại đề nhé!
Ta có : \(\widehat{BAC}=180^0-2\widehat{ACB}\) (vì góc ABC = góc ACB do tam giác ABC cân tại A)
Do đó: \(\widehat{BAC}=2\left(90^0-\widehat{ACB}\right)=2\widehat{CBH}\) (đpcm)