K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Sửa đề:

Cho tam giác ABC cân tại A, đường cao BH. Chứng minh

rằng \(\widehat{BAC}=\widehat{CBH}\).

Bạn xem lại đề nhé!

10 tháng 8 2017

A B C H

Ta có : \(\widehat{BAC}=180^0-2\widehat{ACB}\) (vì góc ABC = góc ACB do tam giác ABC cân tại A)

Do đó: \(\widehat{BAC}=2\left(90^0-\widehat{ACB}\right)=2\widehat{CBH}\) (đpcm)

18 tháng 3 2021

a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC

mà AC=10cm => AB=10cm

Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H

=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)

dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm

Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC

=> BH=CH=6cm

b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)

Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)

Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)

từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)

Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)

=> AK=AD

15 tháng 5 2019

Chứng minh tam giác ABH = tam giác ACM vậy M ở đâu bạn?

15 tháng 5 2019

Hình vẽ:

1 tháng 5 2019

a,xét ▲ ACE và▲AKE có:gócACE= gócAKE=90

chungAE

góc CAE=gócKAE(tia phân giác AE của góc CAB)

⇒ΔACE=ΔAKE(c.h-g.n)→AC=AK

1 tháng 5 2019

bạn có hình chưa

16 tháng 1 2023

loading...  loading...  loading...  

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

Do đó: ΔAHB=ΔAKC

b: góc ABH+góc EBC=góc ABC

góc ACK+góc ECB=góc ACB

mà góc ABH=góc ACK;góc ABC=góc ACB

nên góc EBC=góc ECB

=>ΔEBC cân tại E

c: AB=AC

EB=EC

=>AE là trung trực của BC

=>AE vuông góc với BC

13 tháng 1 2018

Câu 1 (Bạn tự vẽ hình giùm)

a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)

\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)

BD = DC (D là trung điểm của BC)

Cạnh AD chung

=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)

b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)

c) Mình xin chỉnh lại đề một chút: ​AD \(\perp\)BC tại D

Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)

Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)

=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)

20 tháng 4 2016

Bạn tự vẽ hình nhé. 

K là giao điểm của 2 đường phân giác BD và CE => AK là phân giác của góc A (Vì 3 đường phân giác đồng quy tại 1 điểm)

Mà tam giác ABC cân tại A => Phân giác góc A cũng chính là trung tuyến => AK qua trung điểm của BC

(Hoặc bạn có thể chứng minh cụ thể như sau: Kéo dài AK cắt BC tại M

Xét 2 t.g AMB và AMC có:

- AM chung

- g. BAM = CAM (vì AK là phân giác; K thuộc AM)

-AB = AC (2 cạnh bên của tam giác cân ABC)

=> t.g AMB = t. AMC (C.G.C) => MB = MC => M là trung điểm của BC.)