Tìm x
1). \(9x^2+y^2-10y-12x+29=0\)
2). \(4x^2+12y+29-8x+x^2=0\)
3). \(x^2+29+9y^2+8x-12y=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^2\)+\(y^2\)+2y-6x+10=0
=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0
=> (x-3)\(^2\)+(y+1)\(^2\)=0
pt vô nghiệm
4.
=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0
=> (x+4)\(^2\)+(3y-2)\(^2\)=0
pt vô nghiệm
1) \(x^2-2x+5+y^2-4y=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
Để PT bằng 0 thì:
\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)
\(\Rightarrow x=1\)và \(y=2\)
2) \(y^2+2y+5-12x+9x^2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)
..............................................................................
..............<Giải thích như câu đầu>......................
.............................................................................
\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)
\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)
3) \(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)
......................................................................
...............<Giải thích như câu đầu>..............
.......................................................................
\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)
\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)
1) \(x^2-2x+5+y^2-4y=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
Để PT bằng 0 thì:
\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)
\(\Rightarrow x=1\)và \(y=2\)
2) \(y^2+2y+5-12x+9x^2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)
..............................................................................
..............<Giải thích như câu đầu>......................
.............................................................................
\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)
\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)
3) \(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)
......................................................................
...............<Giải thích như câu đầu>..............
.......................................................................
\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)
\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)
1. Theo mình là sai đề, không biết có phải vậy không
2. (x^2 - 2.x.5 + 25) + (9y^2 - 2.3.2 +4) =0
(x-5)^2 + (3y-2)^2 = 0
TH1: (x-5)^2 = 0
x-5=0
x=5
TH2: (3y-2)^2 =0
3y -2=0
y=2/3
1. x2+y2-2x+4y+3=0
<=>(x2-2x+1)+(y2+4y+2)=0
<=>(x-1)2+(y+2)2=0
Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
2)
a) \(x^3-5x^2+8x-4=0\)
\(\Leftrightarrow x^3-4x^2-x^2+4x+4x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy x=1 ; x=2
b) \(2x^3-x^2+3x+6=0\)
\(\Leftrightarrow2x^3-2x-x^2-x+6x+6=0\)
\(\Leftrightarrow\left(2x^3-2x\right)-\left(x^2+x\right)+\left(6x+6\right)=0\)
\(\Leftrightarrow2x\left(x^2-1\right)-x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+1\right)-x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x-x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x^2-3x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x=-6\left(loai\right)\end{matrix}\right.\)
Vậy x=-1
a) \(x^2-8x+y^2+6y+25=0\)
\(\left(x-8\right)x+y\left(y+6\right)+25=0\)
\(x^2+y^2+6y+25=8x\)
\(\Rightarrow x=4,y=-3\)
b ) 4x2-4x+9y2 -12y +5
<=> [( 2x )2 - 4x + 1 ] [ (3y) 2 - 12y + 4 )] = 0
<=> ( 2x - 1 )2 + ( 3y - 2 )2 =0 ( Vì (2x -1)2 >=0 , ( 3y - 2 )2 >= 0 )
<=> 2x - 1 = 0 và 3y -2 = 0
<=> x = 1/2 và y = 2/3
1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)
2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)
3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)
\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)
ta có : \(\left(3x+2\right)^2\ge0\forall x\) và \(\left(2y-2\right)^2\ge0\forall y\)
\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)
\(\Rightarrow\) phương trình vô nghiệm
\(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+4^2\right).\left[\left(3y\right)^2-2.3y.2+2^2\right]=0\)
\(\Leftrightarrow\left(x+2\right)^2.\left(3y-2\right)^2=0\)
\(\Leftrightarrow\left[\begin{matrix}x+4=0\\3y-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-4\\y=\frac{2}{3}\end{matrix}\right.\)
Vậy ............
\(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right).\left(9y^2-6y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2.\left(3y-2\right)^2=0\)
\(\Leftrightarrow\left(x+4\right)\left(3y-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+4=0\\3y-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-4\\y=\frac{2}{3}\end{matrix}\right.\)
Vậy \(x=-4\) và \(y=\frac{2}{3}\)
1) \(9x^2+y^2-10y-12x+29=0\)
\(\Leftrightarrow\left(9x^2-12x+4\right)+\left(y^2-10y+25\right)=0\)
\(\Leftrightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\)
ta có : \(\left(3x-2\right)^2\ge0\forall x\) và \(\left(y-5\right)^2\ge0\forall y\)
\(\Rightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=5\end{matrix}\right.\)
vậy \(x=\dfrac{2}{3};y=5\)
2) câu này đề sai rồi nha
3) \(x^2+29+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)+9=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9=0\)
ta có : \(\left(x+4\right)^2\ge0\forall x\) và \(\left(3y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9\ge9>0\forall x;y\)
vậy phương trình vô nghiệm