K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Giải:

Đặt: (x + y) = a ; (y + z) = b ; (z + x) = c

HPT <=> \(\left\{{}\begin{matrix}ab=187\\bc=154\\ca=238\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{187}{a}\\\dfrac{187}{a}\cdot c=154\\c\cdot a=238\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{187}{a}\\c=\dfrac{154a}{187}\\\dfrac{154a}{187}\cdot a=238\end{matrix}\right.\) => \(154a^2=238\cdot187=44506\)

=> \(a^2=\dfrac{44506}{154}=289\Rightarrow a=\sqrt{289}=17\)

=> b = \(\dfrac{187}{17}=11\) ; c = \(\dfrac{238}{17}=14\)

Hay \(\left\{{}\begin{matrix}x+y=17\\y+z=11\\z+x=14\end{matrix}\right.\)

\(\Rightarrow x+y+y+z+z+x-17+11+14=42\)

\(\Leftrightarrow2\left(x+y+z\right)=42\Rightarrow x+y+z=21\)

=> \(\left\{{}\begin{matrix}x=21-\left(y+z\right)=21-11=10\\y=21-\left(z+x\right)=21-14=7\\z=21-\left(x+y\right)=21-17=4\end{matrix}\right.\)

Vậy ..........................

30 tháng 7 2017

Đặt x + y = a ( a > 0 )

y + z = b ( b > 0 )

x + z = c (c > )

Khi đó hệ pt thành :

\(\left\{{}\begin{matrix}ab=187\left(1\right)\\bc=154\left(2\right)\\ac=238\left(3\right)\end{matrix}\right.\)

Nhân (1) (2) (3) vế theo vế được: abc = 2618 (4)

Lần lượt chia (4) cho (1) (2) (3) ta được:

\(\left\{{}\begin{matrix}a=17\\b=11\\c=14\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=17\\y+z=11\\x+z=14\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-z=6\\x+z=14\end{matrix}\right.\Leftrightarrow x=10\Rightarrow y=7\)\(z=4\)

Vậy nghiệm của hệ pt là (10;7;4)

11 tháng 1 2019

Khó hiểu

25 tháng 5 2018

Ta có \(\hept{\begin{cases}\text{(x+y)(y+z)=187}\\\text{(y+z)(z+x)=154}\\\text{(z+x)(x+y)=238}\end{cases}}\)\(\Rightarrow\)(x+y)2(y+z)2(z+x)2=187.154.238    \(\Rightarrow\)  (x+y)(y+z)(z+x)=2618

  \(\Rightarrow\)\(\hept{\begin{cases}z+x=14\\x+y=17\\y+z=11\end{cases}}\)   \(\Rightarrow\) 2(x+y+z)=14+17+11=42  \(\Rightarrow\) x+y+z=21   \(\Rightarrow\) \(\hept{\begin{cases}y=7\\z=4\\x=10\end{cases}}\)

25 tháng 5 2018

đặt x+y=a,y+z=b,z+y=c

hPt trở thành :ab=187,bc=154,ca=238

nhân hết 3 vế với nhau:\(a^2b^2c^2=6853924\)

 Suy ra \(abc=2613\)nên c=abc:ab=2613:187=14.b và c tính tương tự

trở về ẩn cũ r giải nốt đi

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Ta có \(\left\{\begin{matrix} x^2+y^2-2(x+y)=0\\ y^2+z^2-2(y+z)=0\\ z^2+x^2-2(z+x)=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)^2+(y-1)^2=2\\ (y-1)^2+(z-1)^2=2\\ (x-1)^2+(z-1)^2=2\end{matrix}\right.\)

\(\Rightarrow (x-1)^2+(y-1)^2+(z-1)^2=3\)

Do đó suy ra \(\left\{\begin{matrix} (x-1)^2=1\\ (y-1)^2=1\\ (z-1)^2=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=0,2\\ y=0,2\\ z=0,2\end{matrix}\right.\)

Vậy bộ nghiệm của HPT là :

\((0,0,0),(2,2,2),(0,0,2),(0,2,0),(2,0,0),(2,2,0),(2,0,2),(0,2,2)\)

NV
11 tháng 2 2020

a/ Đơn giản là dùng phép thế:

\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)

\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)

Thế vào pt cuối:

\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

Vậy là xong

b/ Sử dụng hệ số bất định:

\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)

\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)

Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)

Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):

\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

30 tháng 11 2019

a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:

\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)

\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)

\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)

\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)

P/s: Không chắc cho lắm ạ.

29 tháng 11 2019

Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,

Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6

Help meeee, please!

thanks nhiều