Giải hpt: \(\left\{{}\begin{matrix}\left(x+y\right)\left(y+z\right)=187\\\left(y+z\right)\left(z+x\right)=154\\\left(z+x\right)\left(x+y\right)=238\end{matrix}\right.\)
(x, y, z > 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}\text{(x+y)(y+z)=187}\\\text{(y+z)(z+x)=154}\\\text{(z+x)(x+y)=238}\end{cases}}\)\(\Rightarrow\)(x+y)2(y+z)2(z+x)2=187.154.238 \(\Rightarrow\) (x+y)(y+z)(z+x)=2618
\(\Rightarrow\)\(\hept{\begin{cases}z+x=14\\x+y=17\\y+z=11\end{cases}}\) \(\Rightarrow\) 2(x+y+z)=14+17+11=42 \(\Rightarrow\) x+y+z=21 \(\Rightarrow\) \(\hept{\begin{cases}y=7\\z=4\\x=10\end{cases}}\)
đặt x+y=a,y+z=b,z+y=c
hPt trở thành :ab=187,bc=154,ca=238
nhân hết 3 vế với nhau:\(a^2b^2c^2=6853924\)
Suy ra \(abc=2613\)nên c=abc:ab=2613:187=14.b và c tính tương tự
trở về ẩn cũ r giải nốt đi
Lời giải:
Ta có \(\left\{\begin{matrix} x^2+y^2-2(x+y)=0\\ y^2+z^2-2(y+z)=0\\ z^2+x^2-2(z+x)=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)^2+(y-1)^2=2\\ (y-1)^2+(z-1)^2=2\\ (x-1)^2+(z-1)^2=2\end{matrix}\right.\)
\(\Rightarrow (x-1)^2+(y-1)^2+(z-1)^2=3\)
Do đó suy ra \(\left\{\begin{matrix} (x-1)^2=1\\ (y-1)^2=1\\ (z-1)^2=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=0,2\\ y=0,2\\ z=0,2\end{matrix}\right.\)
Vậy bộ nghiệm của HPT là :
\((0,0,0),(2,2,2),(0,0,2),(0,2,0),(2,0,0),(2,2,0),(2,0,2),(0,2,2)\)
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:
\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)
\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)
\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)
\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)
P/s: Không chắc cho lắm ạ.
Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,
Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6
Help meeee, please!
thanks nhiều
Giải:
Đặt: (x + y) = a ; (y + z) = b ; (z + x) = c
HPT <=> \(\left\{{}\begin{matrix}ab=187\\bc=154\\ca=238\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{187}{a}\\\dfrac{187}{a}\cdot c=154\\c\cdot a=238\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{187}{a}\\c=\dfrac{154a}{187}\\\dfrac{154a}{187}\cdot a=238\end{matrix}\right.\) => \(154a^2=238\cdot187=44506\)
=> \(a^2=\dfrac{44506}{154}=289\Rightarrow a=\sqrt{289}=17\)
=> b = \(\dfrac{187}{17}=11\) ; c = \(\dfrac{238}{17}=14\)
Hay \(\left\{{}\begin{matrix}x+y=17\\y+z=11\\z+x=14\end{matrix}\right.\)
\(\Rightarrow x+y+y+z+z+x-17+11+14=42\)
\(\Leftrightarrow2\left(x+y+z\right)=42\Rightarrow x+y+z=21\)
=> \(\left\{{}\begin{matrix}x=21-\left(y+z\right)=21-11=10\\y=21-\left(z+x\right)=21-14=7\\z=21-\left(x+y\right)=21-17=4\end{matrix}\right.\)
Vậy ..........................
Đặt x + y = a ( a > 0 )
y + z = b ( b > 0 )
x + z = c (c > )
Khi đó hệ pt thành :
\(\left\{{}\begin{matrix}ab=187\left(1\right)\\bc=154\left(2\right)\\ac=238\left(3\right)\end{matrix}\right.\)
Nhân (1) (2) (3) vế theo vế được: abc = 2618 (4)
Lần lượt chia (4) cho (1) (2) (3) ta được:
\(\left\{{}\begin{matrix}a=17\\b=11\\c=14\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=17\\y+z=11\\x+z=14\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-z=6\\x+z=14\end{matrix}\right.\Leftrightarrow x=10\Rightarrow y=7\) và \(z=4\)
Vậy nghiệm của hệ pt là (10;7;4)