a,b,c>0.C/m
a, \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
b, \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
=> (a+b).\(\left(\dfrac{1}{b}+\dfrac{1}{b}\right)\ge\left(a+b\right).\dfrac{4}{a+b}=4\left(dpcm\right)\)
b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+b+c}\)
=>\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\left(dpcm\right)\)
a,
(a+ b)(\(\frac{1}{a}\)+\(\frac{1}{b}\)) =1+\(\frac{a}{b}\)+\(\frac{b}{a}\)+1 =2+\(\frac{a}{b}\)+\(\frac{b}{a}\)>=4 {vì\(\frac{a}{b}\)+\(\frac{b}{a}\)>=2 theo bất đẳng thức cô-si }.dau"="xay ra khi va chi khi a=b
b,
(a+b+c)(1/a+1/b+1/c)=1+a/b+a/c+1+b/a+b/c+1+c/a+c/b
=3+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))+(\(\frac{a}{c}\)+c/a)>=3+2+2+2=9
đầu"="xảy ra khi và chỉ khi a=b=c {>= có nghĩa là lớn hơn hoặc bằng}
Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)
\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)
Thật vậy, ta có:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)
Vậy ta cần chứng minh:
\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c
do \(a,b,c\ge1\)\(=>\left\{{}\begin{matrix}b+c\ge2\\c+a\ge2\\a+b\ge2\end{matrix}\right.\)
\(=>\left\{{}\begin{matrix}a\left(b+c\right)\ge2a\\b\left(c+a\right)\ge2b\\c\left(a+b\right)\ge2c\end{matrix}\right.\)
\(=>\) biểu thức đề bài cho\(\ge2\left(a+b+c+\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\)
\(2\left(1+1+1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\right)=9\)
dấu= xảy ra<=>a=b=c=1
Chính bài của em:
Cho \(a,b,c\ge1\). CMR: \(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)+2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}... - Hoc24
1) Áp dụng BĐT Cô si
ta có
\(\left(\sqrt{a+b}-\dfrac{1}{2}\right)^2\ge0\forall a,b\inĐK\)
\(\Leftrightarrow a+b-2\sqrt{a+b}.\dfrac{1}{2}+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)
vậy ĐPCM
Bài 2
Áp dụng bđt Cauchy ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{\sqrt{ab}}{2}\)
Thiết lập tương tự và thu lại ta có:
\(\Rightarrow VP\le4\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)
Áp dụng bđt Cauchy ta có \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b+\dfrac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\dfrac{1}{2}\right)^2\ge2.2\sqrt{ab}.\dfrac{1}{2}=2\sqrt{ab}\)
Thiết lập tương tự và thu lại ta có:
\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow VT\ge VP\)
\(\Rightarrowđpcm\)
Áp dụng BĐT cauchy ta có:
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)
Dấu \("="\Leftrightarrow a=b=c\)
1) áp dụng cauchy cho (a+b) và 1/4
\(\frac{\left(a+b\right)+\frac{1}{4}}{2}\ge\sqrt{\left(a+b\right)\cdot\frac{1}{4}}\)
\(\Rightarrow a+b+\frac{1}{4}\ge\sqrt{a+b}\) (Đẳng thức khi \(a+b=\frac{1}{4}\))
2) Ta có: \(\left(x+\frac{1}{2}\right)^2=x^2+x+\frac{1}{4}>x\)
\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2>a+b=\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}};\)
với x,y>0 ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}}\ge\frac{4}{\frac{1}{a}+\frac{1}{b}}\)\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2>\frac{4}{\frac{1}{a}+\frac{1}{b}};\)
Tương tự với \(\left(b+c+\frac{1}{2}\right)^2\) và \(\left(c+a+\frac{1}{2}\right)^2\)Ta có:
\(\left(a+b+\frac{1}{2}\right)^2+\left(b+c+\frac{1}{2}\right)^2+\left(c+a+\frac{1}{2}\right)^2\)
\(>4\left(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\right)\)
Không xảy ra đẳng thức (Nếu vế trái là \(\left(a+b+\frac{1}{4}\right)^2+\left(b+c+\frac{1}{4}\right)^2+\left(c+a+\frac{1}{4}\right)^2\) Thì mới xảy ra đẳng thức.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a)Theo bất đẳng thức cauchy:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{4}{a+b}.\left(a+b\right)\)
\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Dấu "=" xảy ra khi: \(a=b\)
Ta có điều phải chứng minh
b)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge\dfrac{9}{a+b+c}.\left(a+b+c\right)\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)
Dấu "=" xảy ra khi:
\(a=b=c\)
Ta có điều phải chứng minh