B=\(\dfrac{\left(\dfrac{2}{5}\right)^7\cdot5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7\cdot5^2+512}\)
Tính B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)
c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
`8/5 .2/3 + (-5.5)/(3.5) = 16/15 - 5/3 = -3/5`
b) 6/7+5/8 :5 -3/16 .(-2)^2=6/7 + 1/8 - 3/16 .4`
`=55/56 - 3/4`
`=13/56`
\(a,\dfrac{8}{5}.\dfrac{2}{3}+\dfrac{-5.5}{3.5}=\dfrac{16}{15}+\dfrac{-25}{15}=-\dfrac{9}{15}=-\dfrac{3}{5}\)
\(b,\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}\left(-2\right)^2=\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.4=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{55}{56}-\dfrac{3}{4}=\dfrac{13}{56}\)
\(a,=\dfrac{3^6\cdot5^4\cdot9^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+9^6\cdot5^6}=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}\\ =\dfrac{3^{13}\cdot5^4\cdot2}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
\(b,=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}\cdot\dfrac{16}{3}\right)^3}{2^7\cdot5^2+2^9}=\dfrac{2^7+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{2^7+4^3\cdot3^3}{2^7\cdot29}=\dfrac{2^6\left(2+3^3\right)}{2^7\cdot29}=\dfrac{1}{2}\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
Sửa đề: (2/7)^7*7^7
\(A=\dfrac{\left(2\right)^7+\left(\dfrac{9}{3}:\dfrac{3}{16}\right)^3}{2^7\left(5^2+2^2\right)}\)
\(=\dfrac{\left(2\right)^7+\left(16\right)^3}{2^7\cdot29}\)
\(=\dfrac{2^7+2^7\cdot2^5}{2^7\cdot29}=\dfrac{1+2^5}{29}=\dfrac{33}{29}\)
a: \(=\dfrac{2^{13}\cdot5^7\left(2^{17}+5^{20}\right)}{2^{10}\cdot5^7\left(2^{17}+5^{20}\right)}=2^3\)
b: \(M=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)
\(=3^{2\cdot1\cdot13\cdot12}=3^{312}\)
\(B=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}:\dfrac{3}{16}\right)^3}{2^7\cdot5^2+2^9}\)
\(=\dfrac{1+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{\left(12+1\right)\left(12^2-12+1\right)}{2^7\cdot29}\)
\(=\dfrac{13\cdot133}{2^7\cdot29}=\dfrac{1729}{3712}\)