\(\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6\)
giúp mình với nhé mong giải chi tiết cảm ơn trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)
Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)
Lấy (4) trừ (3) ta có:
\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)
\(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}\)
\(=\left(\frac{3}{7}\right)^9\)
Phần nào không hiểu bạn có thể nhắn hỏi mình nhe
Ta có : mẫu số 1 : 4 . 1
mẫu số hai : 4.7
... mẫu số thứ 96 = 100.103 = 10300
=> Số số hạng y là 100
Ta có :
\((y+..+y) + (\frac{3}{1.4} + \frac{3}{4.7} + ...+ \frac{3}{100.103})\)
\(= ( y+...+y) + [1. (\frac{1}{1.4} + \frac{1}{4.7} + ..+ \frac{1}{100.103})]\)
\(= (y+...y) + [1.(\frac{1}{1} - \frac{1}{4} + \frac{1}{4} - \frac{1}{7} + ...+ \frac{1}{100} - \frac{1}{103}) ]\)
\(= (y+...+y) + (1 - \frac{1}{103})\)
\(= (y+...+y) + \frac{102}{103}\)
\(=> (y+...+y) = \frac{308}{103} - \frac{102}{103} = \frac{206}{103}\)
\(=> y = \frac{206}{103} : 100 = \frac{206}{10300} = \frac{103}{5150}\) ( Chia 100 vì có 100 số hạng y)
Vậy \(y = \frac{103}{5150}\)
\(\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^6\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{12}\)
\(=\left(\dfrac{3}{7}\right)^9\)
\(\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^6\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{12}\)
\(=\left(\dfrac{3}{7}\right)^9.\)