cho tam giác abc cân tại a có góc a nhọn. gọi h là trực tâm của tâm giác và góc hba=30 độ. Xét 2 khẳng định sau:
A. tam giác ABC vuông cân
B. tam giác ABC đều
giải thịch và chọn đáp án đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: B C ⊥ A A ' B C ⊥ A H
Do đó:
Mặt khác, tam giác A’BC vuông cân tại A’
nên A ' H = 1 2 B C = 3 a 2
Ta có:
⇒ φ = 60 o
1: góc ADC=góc AEC=90 độ
=>ADEC nội tiếp
2: góc ABH=90 độ-góc BAC=góc DEA
a: Xét ΔAKB và ΔAKC có
AB=AC
góc BAK=góc CAK
AK chung
=>ΔAKB=ΔAKC
ΔABC cân tại A
mà AK là phân giác
nên AK vuông góc CB
b: Xét ΔACB có
BM,AK là trung tuyến
BM cắt AK tại G
=>G là trọng tâm
c: BK=CK=18/2=9cm
=>\(AK=\sqrt{30^2-9^2}=3\sqrt{91}\left(cm\right)\)
=>\(AG=2\sqrt{91}\left(cm\right)\)
Đáp án D
Vì B C ⊥ S A B C ⊥ C A ⇒ B C ⊥ S A C ⇒ B C ⊥ S C ⇒ O là tâm đường tròn ngoại tiếp tam giác SBC
Vì S A ⊥ A B C ⇒ H là trung điểm của AB
a: Vì góc A nhọn nên chắc chắn tam giác ABC không thể vuông cân
=> Loại
b: Gọi giao điểm của BH và AC là K
=> BK\(\perp\)AC tại K
Ta có: ΔABK vuông tại K
nên \(\widehat{ABK}+\widehat{BAK}=90^0\)
hay \(\widehat{BAC}=60^0\)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)
nên ΔABC đều
bạn giúp mk câu nữa được k ạ