Cho hình chữ nhật ABCD, gọi O là giao điểm 2 đường chéo và góc AOD=\(\alpha\)<90o.
Chứng minh: SABCD=\(\dfrac{1}{2}\)AC.BD.\(\sin\alpha\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác OBMC ta có
2 đường chéo BC và OM cắt nhau tại I
I là trung điểm BC (gt)
I là trung điểm OM ( M là điểm đối xứng của O qua I)
-> tứ giác OBMC là hbh
cmtt tứ giác ODNC là hbh
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN // OC
ta có
BM = OC ( OBMC là hbh)
DN = OC (ODNC là hbh)
-.> BM = ON
Xét tứ giác BMND ta có
BM // ON (cmt)
BM = ON (cmt)
-> tứ giác BMND là hbh
b) giả sử BMND là hcn
ta có
MB vuông góc BD ( BNMD là hcn)
BM // OC ( OBMC là hbh)
-> BD vuông góc OC tại O
Vậy AC vuông góc BD thì BMND là hcn
c) ta có
BD // CM ( OB // CM ; O thuộc BD)
BD // CN ( OD //CN . O thuộc BD)
-> CM trùng CN
-> C,N,M thẳng hàng
Kẻ DM _I_ AC (M thuộc AC)
\(\sin\alpha=\dfrac{DK}{DO}=\dfrac{DK}{\dfrac{BD}{2}}=\dfrac{2DK}{BD}\)
\(\dfrac{1}{2}\times AC\times BD\times\sin\alpha\)
\(=\dfrac{1}{2}\times AC\times BD\times\dfrac{2DK}{BD}\)
\(=AC\times DK\)
\(=S_{ABCD}\)
\(\left(AC\times DK=2\times\dfrac{1}{2}AC\times DK=2S_{ACD}=S_{ABCD}\right)\)
thank you very much