cho tam giac abc có hai đường cao bd và ce cắt nhau tại h. gọi k là điểm đối xứng với h qua bc. biết góc a=65. thì số đo góc bkc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: K đối xứng với H qua BC
nên BC là đường trung trực của HK
=>BH=BK và CH=CK
Xét ΔBHC và ΔBKC có
BH=BK
HC=KC
BC chung
Do đó;ΔBHC=ΔBKC
b: \(\widehat{BAC}=70^0\)
nên \(\widehat{ABC}+\widehat{ACB}=110^0\)
\(\widehat{HBC}+\widehat{HCB}=90^0-\widehat{ABC}+90^0-\widehat{ACB}\)
\(=180^0-110^0=70^0\)
=>\(\widehat{BHC}=\widehat{BKC}=110^0\)
a) Ta có:
K đối xứng với H qua BC
⇒ BC là trung trực của HK
⇒ BH=BK; CH=CK
Xét ΔBHC và ΔBKC có:
BH=BK (cmt)
CH=CK (cmt)
BC: cạnh chung
Do đó ΔBHC = ΔBKC(c.c.c)
b) Ta có:
ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)
ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)
⇒ ˆBHC = ˆBHK + ˆCHK
= ˆBAH + ˆABH + ˆCAH + ˆACH
= ˆBAC + ˆABH + ˆACH
Ta lại có:
ˆBAC+ˆABH = 90o (BH⊥AC)
ˆBAC+ˆACH = 90o (CH⊥AB)
⇒2ˆBAC+ˆABH+ˆACH=180o
⇒ˆABH+ ˆACH = 180o− 2ˆBAC
Do đó:
ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o
Mặt khác:
ˆBHC = ˆBKC (ΔBHC = ΔBKC)
⇒ˆBKC=110
Hướng dẫn nha!(đang ngại làm)
Dùng tính chất tổng các góc trong tứ giác tính được góc EHD.
góc EHD=góc BHC(đối đỉnh)
Chứng minh được tam giác BHC=tam giác BKC(c.c.c)
=> góc BHC=góc BKC
=> góc BHC=góc BKC=góc EHD
Vậy............
Chúc bạn học tốt!!!
@Hoang Hung Quan anh cứ làm đi em vẽ hình cho :)