Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước: 16; 1156; 111556; ...
Chứng minh rằng mọi số hạng của dãy đều là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thử vài trường hợp đầu:
16= 42
1156 = 342
111556 = 3342
Như vậy có thể gợi ý:
11...1155..56 = 33..342 (ở đây có n+1 chữ số 1, n chữ số 5 và n chữ số 3)
Ta có nhận xét:
11..11 11..11 (2n + 2 chữ số 1)
+ 44..44 (n + 1 chữ số 4)
1
11..11155..56 (n+1 chữ số 1, n chữ số 5 và 1 chữ số 6)
Vậy 11..11155..56 = 111...1 + 44..44 + 1
= \(\frac{99..99}{9}+4\frac{9..9}{9}+1\)
= \(\frac{10^{2n+2}}{9}+4\frac{10^{n+1}}{9}+1\)
= \(\frac{10^{2n+2}-1}{9}+4\frac{10^{n+1}-1}{9}+1\)
= \(\frac{10^{2n+2}+4.10^{n+1}+4}{9}\)
=\(\frac{\left(10^{n+1}\right)^2+4.10^{n+1}+2^2}{9}\)
= \(\frac{\left(10^{n+1}+2\right)^2}{9}\)
=\(\left(\frac{10^{n+1}+2}{3}\right)^2\)
= \(\left(\frac{100..02}{3}\right)^2\)
= 333...342
3. a) Coi A = ab+1
A = 111...11(n chữ số 1) .10n + 5 .111...11(n chữ số 1) + 1
\(A= \frac {10^n - 1} {9} + 5 \frac { 10^n -1} {9}+1
\)
\(A= \frac {10^2n - 10^n + 5.10^n -5 + 9} {9}\)
\(A =\frac {10^{2n} + 4.10^n + 4} {9}\)
\(A =\frac {(10^n + 2)^2} {3^2}\)
\(A=(\frac{10^n+2} {3}) ^2\)
Vậy A là số chính phương (vì 10n+2 chia hết cho 3)
b)Ta thấy 16 = 1.15 + 1
1156 = 11.105 + 1
111556 = 111.1005 + 1
... 111...1555...56(n chữ số 1,n-1 chữ số 5) = 111...1(n chữ số 1).100...05(n-1 chữ số 0) +1 (phần a)
Vẫy các số hạng trong dãy trên đều là số chính phương
3a)(dấu * là nhân nhé)
Có ab+1
=11...1*100...05+1
=11...1*(33...35(n-1 chữ số 3)*3)+1
=33...3*33...35+1
=33...3*(33...34+1)+1
=33...3*33...34+(33...3+1)
=33...3*33...34+33...34(n-1 chữ số 3)
=33...34*(33...3+1)
=33...34*33...34(n-1 chữ số 3)
=(33...34)^2 là số chính phương
Bài 2 Chứng minh : A.B + 1 là số chính phương với
a/ A =11...1 và B =100...05 (có n chữ số 1 và n-1 chữ số 0)
Lời giải:
Thấy A = 1111 … 11 và B = 100…005
Nên: A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B
Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2
b/ A = 11...12 và B =11...14 (có n chữ số 1)
Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2
Bài 3 Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.
Chứng minh rằng: (A + B + C + 8) là số chính phương
Lời giải: - Với n =1 Thì A = 11, B = 11, C = 6 Nên A + B + C + 8 = 36 = 62
- Với n = 2 Thì A = 1111, B = 111, C = 66 Nên A + B + C + 8 = 1296 = 362
- Với n = 3 Thì A = 111111, B = 1111, C = 666 Nên A + B + C + 8 = 112896 = 3362
- Trường hợp tổng quát, n>3
Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.
Cộng dọc, viết ngay ngắn các bạn dễ thấy:
S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, có n-2 chữ số 8, một chữ số 9 và một chữ số 6
(Với n là số tự nhiên, n>2)
Ta có S = 111…12888…896 = 111…12888…87 + 9 = 333…33x333…39 + 9 =
= 333…33x(333…33 + 6) + 9 =
= 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362
(Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 )
Bài 4 Chứng minh số \(\frac{1}{3}.\left(111...11-333...3300...00\right)\) là lập phương của 1 số tự nhiên
( n chữ số 1, n chữ số 3, n chữ số 0)
Lời giải : Số đã cho là một số âm nên nó không thể bằng lập phương của một số tự nhiên. (Bạn xem lại đề ra đi nhé)
Bài 5: Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước:
Vd: 16 => 1156 => 111556 => 11115556 =>...
Chứng minh mọi số hạng của dãy đều là số chính phương.
Bài 2 Chứng minh : A.B + 1 là số chính phương với
a/ A =11...1 và B =100...05 (có n chữ số 1 và n-1 chữ số 0)
Lời giải:
Thấy A = 1111 … 11 và B = 100…005
Nên: A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B
Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2
b/ A = 11...12 và B =11...14 (có n chữ số 1)
Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2
Bài 3 Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.
Chứng minh rằng: (A + B + C + 8) là số chính phương
Lời giải: - Với n =1 Thì A = 11, B = 11, C = 6 Nên A + B + C + 8 = 36 = 62
- Với n = 2 Thì A = 1111, B = 111, C = 66 Nên A + B + C + 8 = 1296 = 362
- Với n = 3 Thì A = 111111, B = 1111, C = 666 Nên A + B + C + 8 = 112896 = 3362
- Trường hợp tổng quát, n>3
Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.
Cộng dọc, viết ngay ngắn các bạn dễ thấy:
S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, n-2 chữ số 8, một chữ số 9 và một chữ số 6
(Với n là số tự nhiên, n>2)
Ta có S = 111…12888…896 = 111…12888…87 + 9 = 333…33x333…39 + 9 =
= 333…33x(333…33 + 6) + 9 =
= 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362
(Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 )
Bài 4 Chứng minh số .(11...1-33...300...0) là lập phương của 1 số tự nhiên
( n chữ số 1, n chữ số 3, n chữ số 0)
Bài 5: Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước: Vd: 16 => 1156 => 111556 => 11115556 =>...
Chứng minh mọi số hạng của dãy đều là số chính phương
Lời giải: Ta có hai số hạng đầu của dãy số đó là :
16 = 15 + 1 = 3 . 5 + 1 = 3.(3 + 2) + 1 = 32 + 2.3 + 1 = (3 + 1)2
1156 = 1155 + 1 = 33x35 + 1 = 33x(33 + 2) + 1 = 332 + 2.33 + 1 = (33 + 1)2
Số hạng tổng quát (Có n chữ số 1, có n-1 chữ số 5 và 1 chữ số 6) 111…55…56 Ta biến đổi :
111…1155…56 = 111…1155…55 + 1 =
= 333…33x333…35 + 1 = 333…33x(333..33 + 2) + 1 =
= 333…332 + 2x333…33 + 1 = (333…33 + 1)2 = 333…342
(333…34 Có n-1 chữ số 3 và một chữ số 4)
Chú ý rằng: Tích (Mỗi thừa số có n chữ số. Thừa số thứ nhất có n – 1 chữ số 3 và một chữ số 5 ở hàng đơn vị, thừa số thứ hai có n chữ số 3): 333…35x 333…3 viết dạng nhân dọc :
333…335 (Có n-1 chữ số 3 và một chữ số 5)
x 333... 333
________________
100...005 Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
100… 005 ( Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
……………
100…005 (Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)
_______________________
11…1155…555 (Có n chữ số 1 và n chữ số 5)
Chúc bạn Nguyễn Như Quỳ học tập ngày càng giỏi . Bạn tìm đâu ra những bài toán hay đến vậy ?
\(10^n=11...1\times9+1\)(\(n\)chữ số \(1\))
a) \(b=9a+1+5=9a+6\)
\(ab+1=a\left(9a+6\right)+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương.
b) Số đó có dạng: \(A=11...155...5+1\)(\(n\)chữ số \(1\), \(n\)chữ số \(5\))
\(a=11...1\)(\(n\)chữ số \(1\))
\(a=a\left(9a+1\right)+5a+1=9a^2+a+5a+1=9a^2+6a+1=\left(3a+1\right)^2\)là số chính phương.
https://olm.vn/hoi-dap/question/130969.html