chứng minh rằng với mọi số nguyên m, n ta có:
\(\left(m^2n+2m,mn+1\right)=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI \(\left(m^2n+2m,mn+1\right)=d\)
TA CÓ : MN + 1 CHIA HẾT CHO d
=> m^2n+m chia hết cho d
=> m chia hết cho d
=> mn chia hết cho d
=> 1 chia hết cho d
Mà d thuộc Z
=> d = 1
=> đpcm
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)
Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2) ( đoạn này hơi tắt)
Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm)
k nha
Gọi \(d=ƯCLN\left(m^2n+2m;mn+1\right)\) (\(d\in N\)*)
\(\Rightarrow\left\{{}\begin{matrix}m^2n+2m⋮d\\mn+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m^2n+2m⋮d\\m\left(mn+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m^2n+2m⋮d\\m^2n+m⋮d\end{matrix}\right.\)
\(\Rightarrow m⋮d\)
Mà \(mn+1⋮d\)
\(\Rightarrow\left\{{}\begin{matrix}mn⋮d\\mn+1⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
Vì \(d\in N\)*; \(1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(m^2n+2m;mn+1\right)=1\)
Vậy \(ƯCLN\left(m^2n+2m;mn+1\right)=1\) với mọi \(m;n\in Z\)
Bài này hơi rắc rối, mk đã làm đầy đủ hết sức có thể!!
Có j ko hiểu bn coment nhs!!
Chúc bn học tốt!!
Sư phụ ơi sai oy