K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

x2 - 4x + 2 = ( x2 - 4x + 4 ) - 2 = ( x - 2 )2 - 2 ≥ -2 ∀ x

Dấu "=" xảy ra <=> x = 2 . Vậy GTNN của bthuc = -2

21 tháng 8 2021

x^2 - 4x + 2 

= x^2 - 4x + 4 - 2 

= ( x - 2 ) ^2 - 2 

 \(\left(x-2\right)^2\ge0\forall x\)

\(\left(x-2\right)^2-2\ge-2\)   

Dấu = xảy ra khi và chỉ khi 

 x - 2 = 0 

x = 0 + 2 

x = 2 

vậy min = -2 khi và chỉ khi x = 2 

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)

17 tháng 8 2020

Bài làm:

Ta có: \(4x^2-4x-3=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)-4=0\)

\(\Leftrightarrow\left(2x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\2x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}\)

17 tháng 8 2020

Ta có : \(4x^2-4x-3=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)-4=0\)

\(\Leftrightarrow\left(2x-1\right)^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=2\\2x-1=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}\)

Vậy \(x\in\left\{\frac{3}{2};-\frac{1}{2}\right\}\)

10 tháng 9 2021

Có: y=sin^4x−cos^4x
        = (sin^2x−cos^2x)(sin^2x+cos^2x)
        = −cos2x
=> −1≤y≤1
=> min y=−1⇔cos2x=1⇔x=kπ
     max y=1⇔cos2x=−1⇔x=π2+kπ
Vậy min y = -1; max y=1

NV
10 tháng 9 2021

\(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+sin2x\)

\(=1-\dfrac{1}{2}sin^22x+sin2x\)

Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t+1\)

\(-\dfrac{b}{2a}=1\) ; \(f\left(-1\right)=-\dfrac{1}{2}\) ; \(f\left(1\right)=\dfrac{3}{2}\)

\(\Rightarrow y_{min}=-\dfrac{1}{2}\) khi \(sin2x=-1\)

\(y_{max}=\dfrac{3}{2}\) khi \(sin2x=1\)

26 tháng 3 2022

có: tam giác ABO cân tại A (gt)

=> AB=AO (tính chất tam giác cân)

Có: AH vuông góc BO (gt)

=> góc AHB = góc AHO (tính chất đường vuông góc)

Xét tam giác AHB và tam giác AHO có

goc AHB = góc AHO (cmt)

AB = AO (cmt)

AH chung

=> tam giác AHB = tam giác AHO (cạnh huyền - cạnh góc vuông) 

 

19 tháng 12 2021

\(21_{10}=10101_2\)

25 tháng 6 2019

Do m, n cùng dấu, m, n khác 0 nên m, n cùng âm hoặc cùng dương, mà nếu m, n cùng âm thì \(\frac{1}{2m}+\frac{1}{n}< 0< \frac{1}{3}\)

trái với gt \(\Rightarrow\) m, n cùng dương 

\(\frac{1}{3}=\frac{1}{2m}+\frac{1}{n}\ge2\sqrt{\frac{1}{2mn}}\)\(\Leftrightarrow\)\(\frac{1}{2mn}\le\frac{1}{36}\)\(\Leftrightarrow\)\(mn\ge18\)\(\Rightarrow\)\(B\ge18\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{2m}=\frac{1}{n}\\\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}m=3\\n=6\end{cases}}}\)

19 tháng 6 2017

xét xxxx=1111.x=11.101.x

vì 11 và 101 là 2 snt nên x ko thể là snt hay hợp số đc (nếu ko xxxx sẽ là tích của >= 3 snt) 

lại có x khác 0 nên x=1 (1 và 0 là 2 số ko là snt hay hợp số )

vậy xxxx=1111 là số cần tìm