K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

6 tháng 9 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (AC ⊥ SH & AC ⊥ BD ⇒ AC ⊥ (SBD) ⇒ AC ⊥ SD.

b) (MN//AC & AC ⊥ (SBD) ⇒ MN ⊥ (SBD).

c) + Xác định góc α giữa (SBC) và (ABCD)

Gọi I là trung điểm của BC, ta có:

(BC ⊥ IH & BC ⊥ SH ⇒ BC ⊥ (SIH)

⇒ BC ⊥ SI.

⇒ [((SBC),(ABCD)) ] = ∠(SIH) = α.

+ Tính α:

Trong tam giác SIH, ta có: cosα = IH/IS = √3/3 ⇒ α = arccos√3/3.

22 tháng 2 2021

Ta có {BC⊥ABAB⊥SC⇒AB⊥CE{BC⊥ABAB⊥SC⇒AB⊥CE

Khi đó {CE⊥ABCE⊥SA⇒CE⊥(SAB){CE⊥ABCE⊥SA⇒CE⊥(SAB)

Áp dụng hệ thức lượng trong tam giác vuông ta có: SC2=SE.SB⇒SESB=SC2SB2SC2=SE.SB⇒SESB=SC2SB2, tương tự SDSE=SC2SA2SDSE=SC2SA2

Lại cả CA=AC√2=2a;VS.ABC=13SC.SABC=23a3CA=AC2=2a;VS.ABC=13SC.SABC=23a3

Khi đó VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13

Do đó VS.CDE=13.23a3=2a39VS.CDE=13.23a3=2a39.

22 tháng 2 2021
Với OLM.VNHọc mà như chơi, chơi mà vẫn học
NV
21 tháng 7 2021

Gọi D là hình chiếu vuông góc của S lên (ABC)

\(SD\perp\left(ABC\right)\Rightarrow SD\perp AB\) , mà \(AB\perp SA\left(gt\right)\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp AD\)

\(\Rightarrow AD||BC\)

Tương tự ta có: \(BC\perp\left(SCD\right)\Rightarrow BC\perp CD\Rightarrow CD||AB\)

\(\Rightarrow\) Tứ giác ABCD là hình vuông

\(\Rightarrow BD=a\sqrt{2}\)

\(SD=\sqrt{SB^2-BD^2}=a\sqrt{2}\)

Gọi P là trung điểm AD \(\Rightarrow MP\) là đường trung bình tam giác SAD

\(\Rightarrow\left\{{}\begin{matrix}MP=\dfrac{1}{2}SD=\dfrac{a\sqrt{2}}{2}\\MP||SD\Rightarrow MP\perp\left(ABC\right)\end{matrix}\right.\)

\(\Rightarrow\alpha=\widehat{MNP}\)

\(cos\alpha=\dfrac{NP}{MN}=\dfrac{NP}{\sqrt{NP^2+MP^2}}=\dfrac{a}{\sqrt{a^2+\dfrac{a^2}{2}}}=\dfrac{\sqrt{6}}{3}\)

NV
30 tháng 12 2021

a.

Do M là trung điểm SC, N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAC

\(\Rightarrow MN||AC\)

Mà \(AC\in\left(ABCD\right)\Rightarrow MN||\left(ABCD\right)\)

Gọi O là giao điểm AC và BD \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)

\(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

b.

Trong mp (ABCD), kéo dài AB và CD cắt nhau tại E

Trong mp (SCD), nối EM cắt SD tại F

\(\Rightarrow F=SD\cap\left(MAB\right)\)

NV
30 tháng 12 2021

undefined

1: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SAC) vuông góc (SBD)

19 tháng 5 2019