Trong mặt phẳng Oxy cho đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow{v}=\left(2;0\right)\) và phép vị tự tâm O tỉ số \(k=-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đường tròn (C) có tâm I(1; - 2) và bán kính R = 2.
+ Qua phép đối xứng trục Oy biến đường tròn (C) thàn đường tròn (C’); biến tâm I thành tâm I’(-1; -2) và R ‘ = R = 2
+ Qua phép tịnh tiến theo biến đường tròn (C’) thành đường tròn (C”), R”= R’ = R = 2
Biến tâm I’(-1; -2) thành tâm I” (x; y). Áp dụng công thức của phép tịnh tiến ta có:
x = 2 + ( − 1 ) = 1 y = 3 + ( − 2 ) = 1 ⇒ I " ( 1 ; 1 )
Đường tròn (C”) có tâm I”(1; 1) và R” = 2 nên có phương trình:
x – 1 2 + y – 1 2 = 4
Đáp án D
V 0 ; 2 : M x ; y → M ' x ' ; y ' ⇔ O M ' → = 2 O M ' → ⇔ x ' = 2 x y ' = 2 y
T v : M ' x ' ; y ' → M ' ' x ' ' ; y ' ' ⇔ x " = x ' + 1 y " = y ' + 2
Do đó phép đồng dạng F: M (x;y ) → M" ( x";y" ) có tọa độ thỏa mãn hệ thức
x = x ' 2 = x " - 1 2 y = y ' 2 = y " - 2 2
Do M ( x;y ) ∈ ℂ nên
x " - 1 2 - 1 2 + y " - 2 2 - 2 2 = 4 ⇔ x " - 3 2 + y " - 6 2 = 16
Vậy ảnh của (C) qua F là đường tròn có phương trình x - 3 2 + y - 6 2 = 16
Đáp án cần chọn là A
Dễ thấy bán kính của (C') bằng 4. Tâm I' của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O, tỉ số \(k=-2,I\) biến thành \(I_1\left(-2;-4\right)\). Qua phép đối xứng qua trục \(Ox\), \(I_1\) biến thành \(I'\left(-2;4\right)\).
Từ đó suy ra phương trình của (C') là \(\left(x+2\right)^2+\left(y-4\right)^2=16\)
Dễ thấy bán kính của (C') = 4. Tâm I của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O tỉ số k = -2 , I biến thành I 1 ( − 2 ; − 4 ) . Qua phép đối xứng qua trục Ox, I 1 biến thành I′(−2;4).
Từ đó suy ra phương trình của (C') là x + 2 2 + y − 4 2 = 16 .
Phép quay tâm O, góc , biến I thành I'(0;), phép vị tự tâm O, tỉ số biến I' thành I'' = (0; .) = (0;2). Từ đó suy ra phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O, góc và phép vị tự tâm O, tỉ số biến đường tròn (I;2) thành đường tròn (I'';2). Phương trình của đường tròn đó là
+ = 8
Phép quay tâm O, góc , biến I thành I'(0;), phép vị tự tâm O, tỉ số biến I' thành I'' = (0; .) = (0;2). Từ đó suy ra phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O, góc và phép vị tự tâm O, tỉ số biến đường tròn (I;2) thành đường tròn (I'';2). Phương trình của đường tròn đó là
+ = 8