Có 16 tờ giấy bạc loại 2000 đồng, 5000 đồng và 10 000 đồng. Trị giá mỗi loại tiền trên đều bằng nhau. Hỏi mỗi loại có mấy tờ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a,b,c là tờ giấy bạc theo thứ tự là loại 2000 đồng ,5000 đồng và 10000 đồng .
Ta có : a+b+c=16 ;2000a=5000b=10000c
\(\Rightarrow\frac{2000a}{10000}=\frac{5000b}{10000}=\frac{10000c}{10000}\Rightarrow\frac{a}{5}=\frac{b}{2}=\frac{c}{1}\)
Vậy :\(\frac{a}{5}+\frac{b}{2}+\frac{c}{1}=\frac{a+b+c}{5+2+1}=\frac{16}{8}=2\)
\(\Rightarrow\frac{a}{5}=2;\frac{b}{2}=2;\frac{c}{1}=2\Rightarrow a=10;b=4;c=2\)
Vậy :số tờ giấy bạc loại 2000dong ;5000dong ;10000 đong theo thứ tự là 10;4;2
Gọi số tờ giấy bạc loại 2000đ là a, 5000đ là b, 10000đ là c
Theo đề bài ta có số tiền mỗi loại đều bằng nhau
2000a=5000b=10000c và a+b+c=16
Suy ra:2000a=5000b=10000c
Nhân mỗi vế với \(\frac{1}{10000}\)để rút gọn
->\(\frac{2000a}{10000}\)=\(\frac{5000b}{10000}\)=\(\frac{10000c}{10000}\)
->\(\frac{a}{5}\)=\(\frac{b}{2}\)=\(\frac{c}{1}\)
Theo T/C dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{5+2+1}=\frac{16}{8}=2\)
Từ \(\frac{a}{5}=2=>a=2.5=10\)
\(\frac{b}{2}=2=>b=2.2=4\)
\(\frac{c}{1}=2=>c=2.1=2\)
Vậy số tờ giấy bạc loại 2000đ là 10 tờ
5000đ là 4 tờ
10000đ là 2 tờ
Gọi số tờ tiền loại 2000đ là a, 5000đ là b, 10000đ là c => a + b + c =16
Ta có: a.2000 = b.5000 = c.10000
⇒a:12000=b:15000=c:110000⇒a:12000=b:15000=c:110000
⇒a12000=b15000=c110000⇒a12000=b15000=c110000
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a12000=b15000=c110000=a+b+c12000+15000+110000=1611250=20000a12000=b15000=c110000=a+b+c12000+15000+110000=1611250=20000
⇒a12000=20000⇒a=20000.12000=10⇒a12000=20000⇒a=20000.12000=10
b15000=20000⇒b=20000.15000=4b15000=20000⇒b=20000.15000=4
c110000=20000⇒c=20000.110000=2c110000=20000⇒c=20000.110000=2
Vậy ...
Chúc cậu hok tốt!
Gọi số tờ tiền loại 2000 đ là a số tờ loại 5000 đ là b số tờ loại 10000đ là c
Theo bài ra ta có:
2000a=5000b=10000c
\(\Rightarrow\frac{a}{\frac{1}{2000}}=\frac{b}{\frac{1}{5000}}=\frac{c}{\frac{1}{10000}}\)
Áp dụng tính chất DTSBN ta có:
\(\frac{a}{\frac{1}{2000}}=\frac{b}{\frac{1}{5000}}=\frac{c}{\frac{1}{10000}}=\frac{a+b+c}{\frac{1}{2000}+\frac{1}{5000}+\frac{1}{10000}}=\frac{16}{\frac{1}{1250}}=20000\)
\(\Rightarrow\hept{\begin{cases}a=10\\b=4\\c=2\end{cases}}\)
vậy:.....
có j k hiểu ibx mk mà hỏi :)
Gọi a,b,c lần lượt các tờ giấy bạc gồm 500 đồng , 2000 đồng và 5000 đồng
Theo de bai ta co :
\(\frac{a}{500}=\frac{b}{2000}=\frac{c}{5000}\) va a+b+c=54
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{500}=\frac{b}{2000}=\frac{c}{5000}=\frac{a+b+c}{500+2000+5000}=\frac{54}{7500}=?\)
số hơi lớn đó
có 10 tờ 2000 đồng
có 4 tờ 5000 đồng
có 40 tờ 500 đồng
nha bạn chúc bạn học tốt
Đề phải là 10000 mới đúng
Gọi số tờ giấy bạc 2000 đồng là x, số tờ giấy bạc 5000 đồng là y, số tờ giấy bạc 10000 đồng là z (x,y,z thuộc N; khác 0; đơn vị là đồng)
=>x.2000 = y.5000 = z.10000
=>\(\frac{x.2000}{1000}=\frac{y.5000}{1000}=\frac{z.10000}{1000}\)
=>x.2 = y.5 = z.10
=>\(\frac{x}{5}=\frac{y}{2};\frac{y}{10}=\frac{z}{5}\)
Ta có:
\(\frac{x}{5}=\frac{y}{2}=>\frac{x}{25}=\frac{y}{10}\)
\(\frac{y}{10}=\frac{z}{5}=>\frac{y}{10}=\frac{z}{5}\)
=>\(\frac{x}{25}=\frac{y}{10}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{25}=\frac{y}{10}=\frac{z}{5}\) =\(\frac{x+y+z}{25+10+5}\) =\(\frac{64}{40}\) =\(\frac{8}{5}\)
=>\(\hept{\begin{cases}\frac{x}{25}=\frac{8}{5}\\\frac{y}{10}=\frac{8}{5}\\\frac{z}{5}=\frac{8}{5}\end{cases}}\) =>\(\hept{\begin{cases}x=\frac{8}{5}.25\\y=\frac{8}{5}.10\\z=\frac{8}{5}.5\end{cases}}\) =>\(\hept{\begin{cases}x=40\\y=16\\z=8\end{cases}}\) Vậy\(\hept{\begin{cases}x=40\\y=16\\z=8\end{cases}}\)
Vậy có 40 tờ giấy bạc loại 2000 đồng, 16 tờ giấy bạc loại 5000 đồng và 8 tờ giấy bạc loại 10000 đồng
10 000 chứ có đâu 16 000 bạn?
Gọi x,y,z là số tờ tiền các loại 2000,5000,10000
Khi đó:
2000x=5000y=10000z
=> 2x=5y=10z
=> x/5=y/2=z
Mà x+y+z=64
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/5+y/2+x/1=x+y+z/5+2+1=64/8=8
=> x=40
y=16
z=8
Đ/S:...
Gọi a,b,c lần lượt là số tờ giấy bạc loại 2000đ,5000đ và 10000đ.(a,b,c \(\in N^{\cdot}\))
Theo đề bài,ta có \(2000a=5000b=10000c\) và \(a+b+c=16\)
\(\Rightarrow\dfrac{2000a}{10000}=\dfrac{5000b}{10000}=\dfrac{10000c}{10000}\) và \(a+b+c=16\)
\(\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{c}{1}\) và \(a+b+c=16\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{a+b+c}{5+2+1}=\dfrac{16}{8}=2\)
Với\(\dfrac{a}{5}=2\Rightarrow a=10\)
\(\dfrac{b}{2}=2\Rightarrow b=4\)
\(\dfrac{c}{1}=2\Rightarrow c=2\)
Vậy loại 2000đ mua được 10 tờ
loại 5000đ mua được 4 tờ
loại 10000đ mua được 2 tờ
Gọi a,b,c lần lượt là số tờ giấy bạc loại 2000đ,5000đ và 10000đ.(a,b,c ∈N⋅∈N⋅)
Theo đề bài,ta có 2000a=5000b=10000c2000a=5000b=10000c và a+b+c=16a+b+c=16⇒2000a10000=5000b10000=10000c10000⇒2000a10000=5000b10000=10000c10000 và a+b+c=16a+b+c=16
⇒a5=b2=c1⇒a5=b2=c1 và a+b+c=16a+b+c=16
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a5=b2=c1=a+b+c5+2+1=168=2a5=b2=c1=a+b+c5+2+1=168=2
Với a5=2⇒a=10a5=2⇒a=10
b2=2⇒b=4b2=2⇒b=4
c1=2⇒c=2c1=2⇒c=2
Vậy loại 2000đ mua được 10 tờ
loại 5000đ mua được 4 tờ
loại 10000đ mua được 2 tờ