Tìm x thoả mãn đẳng thức : \(\dfrac{2x-1}{2-x}>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)
\(=\dfrac{4x}{\left(x+2\right)}\cdot\dfrac{-1}{x}=\dfrac{-4}{x+2}\)
b: 2x^2+x=0
=>x(2x+1)=0
=>x=0(loại) hoặc x=-1/2(nhận)
Khi x=-1/2 thì \(A=-4:\left(-\dfrac{1}{2}+2\right)=-4:\dfrac{3}{2}=-4\cdot\dfrac{2}{3}=-\dfrac{8}{3}\)
c: Để A=1/2 thì -4/x+2=1/2
=>x+2=-2
=>x=-4
a: \(B=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)
\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)
\(=\dfrac{3}{x-3}\)
b: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>x=-3(loại) hoặc x=2(nhận)
Khi x=2 thì \(B=\dfrac{3}{2-3}=-3\)
c: Để B=-3/5 thì x-3=-5
=>x=-2(loại)
d: Để B<0 thì x-3<0
=>x<3
x2+2y2-2xy-2y-2x+5=0
<=>(x2-2xy+y2-2x+2y+1)+(y2-4y+4)=0
<=>(x-y-1)2+(y-2)2=0
Do (x-y-1)2\(\ge\)0
(y-2)2\(\ge\)0
=>Phương trình tương đương \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
\(x^2+2y^2-2xy-2y-2x+5=0\)
\(\Leftrightarrow\left(x^2-2xy-2x+y^2+2y+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-2\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\ge x,y\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\forall\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\)\(\ge\)\(\sqrt{2^2+\left(a^2+b^2\right)^2}\)(1)
Ta lại có \(\frac{a^2+b^2}{2}\ge ab\)
\(\frac{a^2+1}{2}\ge a\)
\(\frac{b^2+1}{2}\ge b\)
Từ đó => a2 + b2 \(\ge\)a + b + ab - 1 = \(\frac{1}{4}\)
Thế vào 1 ta được P \(\ge\)\(\frac{\sqrt{65}}{4}\)
\(\frac{9}{4}=\left(a+1\right)\left(b+1\right)\le\frac{\left(a+1\right)^2+\left(b+1\right)^2}{2}=\frac{2\left(a^2+1\right)+2\left(b^2+1\right)}{2}=a^2+b^2+2.\)
\(\Rightarrow a^2+b^2\ge\frac{1}{4}\)
\(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\left(\frac{1}{4}\right)^2}=\frac{\sqrt{17}}{2}\)
Ta có: \(\left(2x-y\right)^2\ge0\); \(\left(y-2\right)^2\ge0\); \(\sqrt{\left(x+y+z\right)^2}=\left|x+y+z\right|\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\x+y+z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=?\\y=?\\z=?\end{matrix}\right.\)
Bạn tự giải :D
1.(x+1)+(x+2)+(x+3)+.......+(x+19)+(x+20)=40
⇒20x+(1+2+...+20)=40
⇒20x+210=40
⇒20x=40-210=-170
⇒x=-8.5
1. (x+1)+(x+2)+...+(x+20)=40
x+1+x+2+...+x+20 =40
20x+(1+2+...+20) =40
20x+210 =40
20x =40-210
20x =-170
x =-170:20
x =-8,5
Vậy x=-8,5
pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow16-4\left(m+1\right)=12-4m\ge0\Leftrightarrow m\le3\)
áp dụng hệ thức vi ét ta có: \(x1.x2=m+1;x1+x2=4\)
\(x1^2+x2^2=5\left(x1+x2\right)\Leftrightarrow\left(x1+x2\right)^2-2x1.x2=5\left(x1+x2\right)\Leftrightarrow16-2\left(m+1\right)=20\Leftrightarrow-2m-2=4\Leftrightarrow m=-3\)(t/m đk) => để pt... m=-3
đk: x khác 2
\(\dfrac{2x-1}{2-x}>1\Leftrightarrow\dfrac{2x-1}{2-x}-1>0\Leftrightarrow\dfrac{x-3}{2-x}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3< 0\\2-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3>0\\2-x>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2< x< 3\\\left(?\right)\end{matrix}\right.\)
(?) : không tồn tại x thỏa mãn {bạn thay vào dấu trên kia}
Vậy S={x|2<x<3}
-------------------------------------------------------
Alpha Phương Hoa : Cảm ơn nhiều nha ^^!
đk: x khác 2
\(\dfrac{2x-1}{2-x}>1\Leftrightarrow2x-1>2-x\Leftrightarrow3x>3\Leftrightarrow x>1\)
Vậy S={x|x>1; x khác 2}