Trong một phòng họp có 360 ghế được xếp thành các dãy và số ghế trong mỗi dãy đều bằng nhau. Có một lần phòng họp phải xếp thêm một dãy ghế và mỗi dãy ghế tăng 1 ghế (số ghế trong các dãy bằng nhau) để đủ chỗ cho 400 đại biểu. Hỏi bình thường trong phòng có bao nhiêu dãy ghế ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (dãy) là số dãy ghế ban đầu của phòng họp.
Điều kiện: x ∈N*
Khi đó số ghế ngồi trong một dãy là: 360/x (ghế)
số dãy ghế sau khi tăng là x + 1 (dãy)
số ghế ngồi trong một dãy sau khi tăng là:
Theo đề bài, ta có phương trình:
⇔ 400x – 360(x + 1) = x(x + 1)
⇔ 400x – 360x – 360 = x 2 + x ⇔ x 2 – 39x + 360 = 0
∆ = - 39 2 – 4.1.360 = 1521 – 1440 = 81 > 0
∆ = 81 = 9
Cả hai giá trị của x đều thỏa mãn điều kiện bài toán.
Vậy bình thường trong phòng có 15 hoặc 24 dãy ghế.
Gọi số dãy là x, số ghế là y (x;y thuộc N*)
Vì tổng số ghế là 320 nên:
xy = 320
=> y = 320/x (1)
Nếu số dãy ghế tăng tăng thêm 1 và số ghế mỗi dãy tăng thêm 2 thì trong phòng có 374 ghế nên ta có:
(x+1) (y+2) - xy = 374 - 320
=> 2x + y + 2 + xy -xy = 54
=>2x + y = 52 (2)
Thay (1) vào (2) ta có:
2x + 320/x =52
<=> 2x2x2 +320 = 52x
<=> x2x2 + 160 = 26x
<=> x2x2 - 26x +160 =0
<=> x2x2 - 10x - 16x + 160 = 0
<=> (x-16) * (x-10) = 0
<=> x = 16 hoặc x=10
=> y= 320/16 = 20 hoặc y = 320/10 =32
Vậy
TH1: Phòng họp có 16 dãy, mỗi dãy 20 chỗ
TH2: Phòng họp có 10 dãy, mỗi dãy 32 chỗ
Gọi số dãy ghế là x (x ∈ ℕ * ), (dãy)
Số ghế ở mỗi dãy là: 360/x (ghế)
Số dãy ghế lúc sau là x + 1 (dãy)
Số ghế ở mỗi dãy lúc sau là: 360/x + 1(ghế)
Vì sau khi tăng số dãy thêm 1 và số ghế của mỗi dãy tăng thêm 1 thì trong phòng có 400 ghế nên ta có phương trình:
Vậy số dãy ghế là 15 (dãy)
Đáp án: B
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
{y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.
Gọi số dãy ghế trong phòng họp lúc đầu là x (dãy)
thì số ghế của 1 dãy trong phòng họp lúc đầu là \(\dfrac{240}{x}\) ( ghế)
số dãy ghế trong phòng họp lúc sau là x+20( dãy)
số ghế của 1 dãy trong phòng họp lúc là \(\dfrac{240}{x}\)-1( ghế)
ĐK : x∈N*
ĐK:x∈N*
theo đề bài ta có
\(\left(x+20\right)\left(\dfrac{240}{x}-1\right)=240\)
⇔\(-x^2-20x+4800=0\)
\(\Delta'=\left(-10\right)^2-\left(-1\right)\cdot4800=4900\)
\(\sqrt{\Delta'}=\sqrt{4900}=70>0\)
⇒Pt có 2 nghiệm phân biệt
\(x_1=\dfrac{10-70}{-1}=60\left(N\right)\)
\(x_2=\dfrac{10+70}{-1}=-80\left(L\right)\)
Vậy ......