Rút gọn biểu thức sau:
(√12 - 2√18 + 5√3) x √3+5√6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3\sqrt{3}-2\sqrt{3}+4\sqrt{3}-5\sqrt{3}=2\sqrt{3}\)
a ⇒A=\(4\sqrt{4\times3}+3\sqrt{25\times3}-5\sqrt{16\times3}=8\sqrt{3}+15\sqrt{3}-20\sqrt{3}=3\sqrt{3}\)
b ĐKXĐ x≥2 ⇔\(\sqrt{x-2}+3\sqrt{x-2}=16\Leftrightarrow4\sqrt{x-2}=16\Leftrightarrow\sqrt{x-2}=4\Rightarrow x-2=16\Leftrightarrow x=18\)
a. \(A=4\sqrt{12}+3\sqrt{75}-5\sqrt{48}\)
\(=8\sqrt{3}+15\sqrt{3}-20\sqrt{3}\)
\(=3\sqrt{3}\)
b. \(\sqrt{x-2}-\sqrt{9x-18}=16\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{9\left(x-2\right)}=16\)
\(\Leftrightarrow\sqrt{x-2}-3\sqrt{x-2}=16\)
\(\Leftrightarrow-2\sqrt{x-2}=16\)
\(\Leftrightarrow\sqrt{x-2}=-8\) ( Vô lý )
Vậy PT vô nghiệm
\(2x^3\left(x^2-5\right)+\left(-2x^3+4x\right)+\left(6+x\right)x^2\)
\(=2x^5-10x^3-2x^3+4x+6x^2+x^3=2x^5-9x^3+6x^2+4x\)
3√2 - 5√18 + 6√72 - 4√98 = 3√2-5.3√2+6.2.3√2-4.7/3.3√2
= 3√2(1-5+12-28/3)
= 3√2.(-4/3)
= -4√2
a: \(M=\dfrac{18+5x+15+3x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{8x+24}{\left(x+3\right)\left(x-3\right)}=\dfrac{8}{x-3}\)
b: Thay x=11 vào M, ta được:
\(M=\dfrac{8}{11-3}=1\)
a) \(M=\dfrac{18}{x^2-9}+\dfrac{5}{x-3}+\dfrac{3}{x+3}.\left(x\ne\pm3\right).\)
\(M=\dfrac{18}{\left(x-3\right)\left(x+3\right)}+\dfrac{5}{x-3}+\dfrac{3}{x+3}=\dfrac{18+5\left(x+3\right)+3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{18+5x+15+3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{24+8x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{8\left(3+x\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{8}{x-3}.\)
b) Thay \(x=11\left(TM\right)\) vào biểu thức M:
\(\dfrac{8}{11-3}=\dfrac{8}{8}=1.\)
\(P=\frac{3^{2010}-6^{2010}+9^{2010}-12^{2010}+15^{2010}-18^{2010}}{-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}}\)
\(P=\frac{-3^{2010}.\left(-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}\right)}{-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}}\)
\(P=-3^{2010}\)
Ta có: \(\left(\sqrt{12}-2\sqrt{18}+5\sqrt{3}\right)\cdot\sqrt{3}+5\sqrt{6}\)
\(=\left(2\sqrt{3}-6\sqrt{3}+5\sqrt{3}\right)\cdot\sqrt{3}+5\sqrt{6}\)
\(=3+5\sqrt{6}\)