Câu 1 : cho tam giác Abc nhọn (AB ‹ AC) có hai đường cao BD VÀ cE cắt nhau tại H.
a) chứng minh: tam giác ABD ~ tam giác ACE.
b) chứng minh: HD.HB = HE.HC
c) AH cắt BC tại F. Kẻ FI vuônh góc AC tại I. Chứng minh \(\dfrac{IF}{IC}=\dfrac{FA}{FC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhen ,mình giải đây
a) xét tam giác ABD và tam giác ACE
góc D=góc E(=90)
góc A chung
=> 2 tam giác đồng dạng
b) xet tam giác HEB và HDC
Góc HEB=góc HDC(=90)
góc ABD = góc ACE( theo câu a)
=> tam giác HEB đồng dạng tam giác HDC ( gg)
=> \(\dfrac{HB}{HE}=\dfrac{HC}{HD}\Leftrightarrow HB.HD=HE.HC\)
c) Ta có: AF là đường cao thứ 3 ( đi qua giao điểm của 2 đường cao)
Xét tam giác FIC và tam giác AFC có:
góc FIC = góc AFC (=90)
góc C chung
=> 2 tam giác trên đồng dạng
=> \(\dfrac{IF}{IC}=\dfrac{FA}{FC}\left(đpcm\right)\)
Nhớ tick cho mình nhé
Chúc bạn học tốt
Giải:
a, Ta có: \(\widehat{ABD}+\widehat{BAD}=90^o\left(\widehat{ADB}=90^o\right)\) hay \(\widehat{ABD}+\widehat{BAC}=90^o\) (1)
\(\widehat{ACE}+\widehat{CAE}=90^o\left(\widehat{AEC}=90^o\right)\) hay \(\widehat{ACE}+\widehat{BAC}=90^o\) (2)
Từ (1), (2) \(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Mà \(\widehat{ADB}=\widehat{AEC}=90^o\)
\(\Rightarrow\Delta ABD\) đồng dạng với \(\Delta ACE\) ( g-g )
b, Do \(\widehat{EHB}=\widehat{DHC}\) ( đối đỉnh ), \(\widehat{BEH}=\widehat{CDH}=90^o\)
\(\Rightarrow\Delta EHB\) đồng vị với \(\Delta DHC\)
\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{HD}\Rightarrow HD.HB=HE.HC\left(đpcm\right)\)
c, BD, CE là 2 đường cao của t/g ABC cắt nhau tại H
Mà \(H\in AF\)
\(\Rightarrow\)AF cũng là đường cao của t/g ABC
Do \(\widehat{AFC}=\widehat{CIF}=90^o\), \(\widehat{ACF}\): góc chung
\(\Rightarrow\Delta AFC\) đồng vị với \(\Delta FIC\)
\(\Rightarrow\dfrac{FA}{FI}=\dfrac{FC}{IC}\Rightarrow\dfrac{IF}{FA}=\dfrac{IC}{FC}\Rightarrow\dfrac{IF}{IC}=\dfrac{FA}{FC}\left(đpcm\right)\)
Vậy...