Chứng minh rằng a=4+4^1+4^2+4^3+........+4^48+4^49+4^50 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 40+41+42+....+450
M = (40+41)+(42+43)+....+(449+450)
M = 1.(1+4)+42(1+4)+.....+449(1+4)
M = 1.5 + 42.5 +.......+449.5
M = 5.(1+42+.....+449) chia hết cho 5 (đpcm)
a/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+............+\left(3^{49}+3^{50}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+............+3^{49}\left(1+3\right)\)
\(=3.4+3^3.4+...............+3^{49}.4\)
\(=4\left(3+3^3+...........+3^{49}\right)⋮4\)
\(\Leftrightarrow A⋮4\left(đpcm\right)\)
b/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^9\right)+........+\left(+3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+........+3^{47}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+.........+3^{47}.40\)
\(=40\left(3+3^5+...........+3^{47}\right)⋮10\)
\(\Leftrightarrow A⋮10\left(đpcm\right)\)
Bạn lấy 1 và 3, 2 và 4, 5 và 7....48 và 50 cộng với nhau có tổng chia hết cho 10 Suy ra a chia hết cho 10
a)\(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{49}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{49}.4\)
\(A=4.\left(3+3^3+...+3^{49}\right)⋮4\)
\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{50}⋮4\left(đpcm\right)\)
b) \(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(A=120+...+3^{46}.\left(3+3^2+3^3+3^4\right)\)
\(A=120+...+3^{46}.120\)
\(A=120.\left(1+...+3^{46}\right)⋮10\)
\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{49}+3^{50}⋮10\left(đpcm\right)\)
A=4+4^2+4^3+4^4+...+4^49+4^50
A=(4+4^2)+(4^3+4^4)+...+(4^49+4^50)
A=4.(1+4)+4^3.(1+4)+...+4^49.(1+4)
A=4.5+4^3.5+...+4^49.5
A=5.(4+4^3+...+4^49) chia het cho 5(vi 5 chia het cho 5)
=> A chia het cho 5
\(A=4+4^2+4^3+4^4+...+4^{49}+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{49}+4^{50}\right)\)
\(A=4.5+4^3.5+...+4^{49}.5\)
\(A=5.\left(4+4^3+...+4^{49}\right)CHIA-HETCHO5\)
Bài 1 :
chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42
ta thấy 42 = 2 x 3 x 7
A chia hết 42 suy ra A phải chia hết cho 2;3;7
mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2 (1)
số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )
suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )
A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3
A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3
suy ra A chia hết cho 3 ( 2 )
ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )
suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )
A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )
A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7
A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7
suy ra A chia hết cho 7 (3)
từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7
suy ra A chia hết cho 42 ( điều phải chứng minh )
A=3+32 +33+34+...+349+350
=(3+32)+(32+33)+...(349+350)
=3.(1+3)+52.(1+3)+.....+349+(1+3)
=3.4+33.4+...+349.4
=4.(3+33+...+349)chia hết cho 4
=> A chia hết cho 4