K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 8 2021

Đặt \(x=\sqrt[3]{\sqrt[]{50}+7}-\sqrt[3]{\sqrt[]{50}-7}\)

\(x^3=14-3\sqrt[3]{\left(\sqrt[]{50}+7\right)\left(\sqrt[]{50}-7\right)}\left(\sqrt[3]{\sqrt[]{50}+7}-\sqrt[3]{\sqrt[]{50}-7}\right)\)

\(x^3=14-3x\)

\(x^3+3x-14=0\)

\(\left(x-2\right)\left(x^2+2x+7\right)=0\)

\(x=2\)

\(\Rightarrow\dfrac{m}{n}=2\)

\(\Rightarrow\) Hiển nhiên tồn tại vô số m, n nguyên thỏa mãn đẳng thức trên

NV
11 tháng 8 2021

\(y'=-3mx^2+2x-3\)

Hàm nghịch biến trên khoảng đã cho khi với mọi \(x\in\left(-3;0\right)\) ta có:

\(-3mx^2+2x-3\le0\)

\(\Leftrightarrow2x-3\le3mx^2\)

\(\Leftrightarrow\dfrac{2x-3}{3x^2}\le m\)

\(\Rightarrow m\ge\max\limits_{\left(-3;0\right)}\left(\dfrac{2x-3}{3x^2}\right)\)

Xét hàm \(f\left(x\right)=\dfrac{2x-3}{3x^2}\Rightarrow f'\left(x\right)=\dfrac{2\left(3-x\right)}{3x^3}< 0;\forall x\in\left(-3;0\right)\)

\(\Rightarrow f\left(x\right)>f\left(-3\right)=-\dfrac{1}{3}\)

\(\Rightarrow m\ge-\dfrac{1}{3}\)

CHọn B

17 tháng 4 2022

\(y=\dfrac{sinx-cosx}{sinx+cosx}\Rightarrow y'=\dfrac{\left(sinx-cosx\right)'.\left(sinx+cosx\right)-\left(sinx+cosx\right)'.\left(sinx-cosx\right)}{\left(sinx+cosx\right)^2}\)

Dễ thấy : \(\left(sinx-cosx\right)'=cosx+sinx\)

\(\left(sinx+cosx\right)'=cosx-sinx\)

Suy ra : \(y'=\dfrac{\left(sinx+cosx\right)^2+\left(sinx-cosx\right)^2}{\left(sinx+cosx\right)^2}=\dfrac{2}{\left(sinx+cosx\right)^2}\)

a: Phương trình hoành độ giao điểm là:

\(-x^2-2mx+m^2-4=0\)

\(\text{Δ}=\left(-2m\right)^2-4\cdot\left(-1\right)\cdot\left(m^2-4\right)=4m^2+4\left(m^2-4\right)=4m^2+4m^2-16=8m^2-16\)

=>Đề sai rồi bạn

 

9 tháng 4 2022

Anh giải giúp em khi (P): y = x² được không ạ? Em cảm ơn.

1C

6D

18D

20A

24A

29A

35D

31B