B=\(\dfrac{2011}{1.2}+\dfrac{2011}{3.4}+\dfrac{2011}{5.6}+...+\dfrac{2011}{1999.2000}\)
hãy tính B giúp mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{2011}{1.2}+\dfrac{2011}{3.4}+\dfrac{2011}{5.6}+...+\dfrac{2011}{1999.2000}\)
\(\dfrac{A}{2011}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{1999.2000}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\)
\(=\left(1+...+\dfrac{1}{1999}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)\)
\(=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2000}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{1000}\right)\)
\(=\dfrac{1}{1001}+\dfrac{1}{1002}+\dfrac{1}{1003}+...+\dfrac{1}{2000}\)
Vậy \(A=2011\left(\dfrac{1}{1001}+\dfrac{1}{1002}+\dfrac{1}{1003}+...+\dfrac{1}{2000}\right)\)
Theo bài ra ta có :
\(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{4.5}+...+\frac{2011}{1999.2000}\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{1999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) \(-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)
\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1000}\right)\)
\(\Rightarrow\frac{A}{2011}=\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\)
\(\Rightarrow A=2011\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\left(1\right)\)
Ta lại có :
\(B=\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)
\(\Rightarrow B=2012\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\)\(\left(2\right)\)
Từ (1) và (2) => A < B
Vậy A < B
theo bài ra ta có:
\(A=\dfrac{2011}{1.2}+\dfrac{2011}{3.4}+...+\dfrac{2011}{1999.2000}\)
\(\Rightarrow\dfrac{A}{2011}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{1999.2000}\)
\(\Rightarrow\dfrac{A}{2011}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\)
\(\Rightarrow\dfrac{A}{2011}=\left(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{1999}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)\)
\(\Rightarrow\dfrac{A}{2011}=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2000}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)\) \(\Rightarrow\dfrac{A}{2011}=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2000}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)\) \(\Rightarrow\dfrac{A}{2011}=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2000}\right)-\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{1000}\right)\) \(\Rightarrow\dfrac{A}{2011}=\dfrac{1}{1001}+\dfrac{1}{1002}+...+\dfrac{1}{2000}\)
\(\Rightarrow A=2011\left(\dfrac{1}{1001}+\dfrac{1}{1002}+...+\dfrac{1}{2000}\right)\left(1\right)\)
ta lại có:
\(B=\dfrac{2012}{1001}+\dfrac{2012}{1002}+...+\dfrac{2012}{2000}\\ \Rightarrow B=2012\left(\dfrac{1}{1001}+\dfrac{1}{1002}+...+\dfrac{1}{2000}\right)\left(2\right)\)
Từ 1 và 2 => A < B\
vậy A < B
\(A=\dfrac{2011^{2011}+2}{2011^{2011}-1}=\dfrac{2011^{2011}-1+3}{2011^{2011}-1}=\dfrac{2011^{2011}-1}{2011^{2011}-1}+\dfrac{3}{2011^{2011}-1}=1+\dfrac{3}{2011^{2011}-1}\left(1\right)\)
\(B=\dfrac{2011^{2011}}{2011^{2011}-3}=\dfrac{2011^{2011}-3+3}{2011^{2011}-3}=\dfrac{2011^{2011}}{2011^{2011}}+\dfrac{3}{2011^{2011}-3}=1+\dfrac{3}{2011^{2011}-3}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
1+\(\dfrac{3}{2011^{2011}-1}\)>1+\(\dfrac{3}{2011^{2011}-3}\)mà
Có: \(B=\dfrac{2011}{1.2}+\dfrac{2011}{2.3}+\dfrac{2011}{3.4}+...+\dfrac{2011}{1999.2000}\)
B= \(2011\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1999.2000}\right)\)
B = \(2011\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\right)\)
B= \(2011.\left(1-\dfrac{1}{2000}\right)\)
B = \(2011.\dfrac{1999}{2000}=\dfrac{4019989}{2000}\)