1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)
2. C/m biểu thức sau không phụ thuộc vào biến x,y
a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)
b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)
3. Phân tích đa thức thành nhân tử:
a) 81x4 + 4
b) x2 + 8x + 15
c) x2 - x - 12
4. Tìm x biết:
a) 2x (x-5) - x(3+2x) = 26
b) 5x (x-1) = x -1
c) 2(x+5) - x2 - 5x = 0
d) (2x-3)2 - (x+5)2 = 0
e) 3x3 - 48x = 0
f) x3 + x2 -4x = 4
g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0
5. C/m rằng biểu thức
A = -x(x-6) - 10 luôn luôn âm với mọi x
B = 12x - 4x2 - 14 luôn luôn âm với mọi x
C = 9x2 -12x + 11 luôn luôn dương với mọi x
D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.
6. Cho các phân thức sau
\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)
\(B=\dfrac{x^2-9}{x^2-6x+9}\)
\(C=\dfrac{9x^2-16}{3x^2-4x}\)
\(D=\dfrac{x^2+4x+4}{2x+4}\)
\(E=\dfrac{2x-x^2}{x^2-4}\)
\(F=\dfrac{3x^2+6x+12}{x^3-8}\)
a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định
b) Tìm x để giá trị của các phân thức trên bằng 0
c) Rút gọn các phân thức trên.
7. Thực hiện các phép tính sau:
a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)
b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)
d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)
e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)
g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)
8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )
a) Rút gọn biểu thức A
b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.
a: \(A=3^n\cdot27+5^n\cdot125+3^n\cdot3+5^n\cdot25\)
\(=3^n\cdot30+5^n\cdot150\)
Vì \(3^n\cdot30\) chia 60 dư 30(do 3n là số lẻ)
và \(5^n\cdot150\) chia 60 dư 30(do 5n là số lẻ)
nên A chia hết cho 60
c: a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a-b}{c-d}\right)^{2003}=\left(\dfrac{bk-b}{dk-d}\right)^{2003}=\left(\dfrac{b-1}{d-1}\right)^{2003}\)
\(\dfrac{a^{2005}+b^{2005}}{c^{2005}+d^{2005}}=\dfrac{b^{2005}k^{2005}+b^{2005}}{d^{2005}k^{2005}+d^{2005}}=\dfrac{b^{2005}}{d^{2005}}\)
=>Đề sai rồi bạn