K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Theo giả thiết ta có :

\(\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{AB}+\overrightarrow{CA}\right)=0\)

\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{AB}-\overrightarrow{AC}\right)=0\)

\(\Leftrightarrow\overrightarrow{AB}^2-\overrightarrow{AC}^2=0\)

Ta suy ra ABC là tam giác có \(AB=AC\) (Tam giác cân tại A)

30 tháng 3 2017

Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.

Ta có = => =

= - = - = -

Theo quy tắc 3 điểm đối với tổng vec tơ:

= + => = - = (- ).

AK là trung tuyến thuộc cạnh BC nên

+ = 2 => - += 2

Từ đây ta có = + => = - - .

BM là trung tuyến thuộc đỉnh B nên

+ = 2 => - + = 2

=> = + .

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

Theo đề ta có: $\overrightarrow{BM}=2\overrightarrow{MC}=-2\overrightarrow{CM}$

$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}(1)$

$=\overrightarrow{AB}-2\overrightarrow{CM}$

$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$

$\Rightarrow 2\overrightarrow{AM}=2\overrightarrow{AC}+2\overrightarrow{CM}(2)$

Lấy $(1)+(2)\Rightarrow 3\overrightarrow{AM}=\overrightarrow{AB}+2\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Hình vẽ:

30 tháng 3 2017

Ta có: \(\overrightarrow{MB}=3\overrightarrow{MC}\Rightarrow\overrightarrow{MB}=3\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(\Rightarrow\overrightarrow{MB}=3\overrightarrow{MB}+3\overrightarrow{BC}\)

\(\Rightarrow-\overrightarrow{MB}=3\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{BM}=\dfrac{2}{3}\overrightarrow{BC}\). Mà \(\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\) nên \(\overrightarrow{BM}=\dfrac{2}{3}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

Theo quy tắc 3 điểm, ta có

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\Rightarrow\overrightarrow{AM}=\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}-\dfrac{3}{2}\overrightarrow{AB}\)

\(\Rightarrow\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}\) hay \(\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{u}+\dfrac{3}{2}\overrightarrow{v}\)

30 tháng 3 2017

Trước hết ta có

= 3 => = 3 ( +)

=> = 3 + 3

=> - = 3

=> =

= - nên = (- )

Theo quy tắc 3 điểm, ta có

= + => = + -

=> = - + hay = - +

2 tháng 10 2016

Vectơ bằng vectơ B'C' là: vectơ BA' và vectơ A'C
Vectơ bằng vectơ A'C' là: vectơ CB' và vectơ B'A

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Gọi M là trung điểm của cạnh BC ta có :

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}=\overrightarrow{AD}\)

Mặt khác :

\(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}\)

Theo giả thiết ta có :

\(\left|2\overrightarrow{AM}\right|=\left|\overrightarrow{CB}\right|=\left|\overrightarrow{AD}\right|\) hay \(AM=\dfrac{BC}{2}\)

Ta suy ra ABC là tam giác vuông tại A