chứng minh 1/9=1/25+1/49+...........+1/(2n+1)^2 <1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/22+1/32+...+1/92
Ta có:1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10
⇒A>1/2.3+1/3.4+...+1/9.10
A>1/2-1/3+1/3-1/4+...+1/9-1/10
A>1/2-1/10
A>2/5(đpcm)
minh van chua ro phan de 2^2n+1-1 la (2^2n+1) hay nhu de ghi ban a
22n(22n+1-1)-1
\(=2^{4n+1}-2^{2n}-1=2.2^{4n}-2^{2n}-1\)
\(=2\left(2^{2n}\right)^2-2^{2n}-1=A\)
Đặt \(2^{2n}=t\)
\(\Rightarrow A=2t^2-t-1=\left(2t+1\right)\left(t-1\right)\)
\(=\left(2.2^{2n}+1\right)\left(2^{2n}-1\right)\)
\(=\left(2^{2n+1}+1\right)\left(2^{2n}-1\right)=\left(2+1\right)\left(2^{2n}-2^{2n-1}+...+1\right)\left(2+1\right)\left(2^{2n-1}+...-1\right)\)
\(=9.B\)
Vậy \(A⋮9\)
Lời giải:
Ta thấy \((2n+1)^2=4n^2+4n+1> 4n^2+4n\)
\(\Leftrightarrow (2n+1)^2> 2n(2n+2)\) \(\Leftrightarrow \frac{1}{(2n+1)^2}\leq \frac{1}{2n(2n+2)}\)
Do đó:
\(\left\{\begin{matrix} \frac{1}{3^2}< \frac{1}{2.4}\\ \frac{1}{5^2}< \frac{1}{4.6}\\ .......\\ \frac{1}{(2n+1)^2}< \frac{1}{2n(2n+2)}\end{matrix}\right.\)
\(\Rightarrow \frac{1}{9}+\frac{1}{25}+....+\frac{1}{(2n+1)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n(2n+2)}=M\) (1)
\(2M=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{2n(2n+2)}\)
\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{2n+2-2n}{2n(2n+2)}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\)
\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\)
\(\Rightarrow M< \frac{1}{4} (2)\)
Từ (1),(2) suy ra \(\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2n+1)^2}< \frac{1}{4}\) (đpcm)