K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

adu vjp

27 tháng 5 2021

A=1/22+1/32+...+1/92

 

Ta có:1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10

⇒A>1/2.3+1/3.4+...+1/9.10

A>1/2-1/3+1/3-1/4+...+1/9-1/10

A>1/2-1/10

A>2/5(đpcm)

27 tháng 5 2021

Ta có: A = 1/4 + 1/9 + 1/16 + 1/25 +1/36 + 1/49 + 1/64 + 1/81

Vì 1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10

=>A>1/2.3+1/3.4+...+1/9.10

=>A>1/2-1/3+1/3-1/4+...+1/9-1/10

=>A>1/2-1/10

=>A>2/5

18 tháng 4 2020

minh van chua ro phan de 2^2n+1-1 la (2^2n+1) hay nhu de ghi ban a

15 tháng 4 2020

22n(22n+1-1)-1

\(=2^{4n+1}-2^{2n}-1=2.2^{4n}-2^{2n}-1\)

\(=2\left(2^{2n}\right)^2-2^{2n}-1=A\)

Đặt \(2^{2n}=t\)

\(\Rightarrow A=2t^2-t-1=\left(2t+1\right)\left(t-1\right)\)

\(=\left(2.2^{2n}+1\right)\left(2^{2n}-1\right)\)

\(=\left(2^{2n+1}+1\right)\left(2^{2n}-1\right)=\left(2+1\right)\left(2^{2n}-2^{2n-1}+...+1\right)\left(2+1\right)\left(2^{2n-1}+...-1\right)\)

\(=9.B\)

Vậy \(A⋮9\)

15 tháng 4 2020

Cảm ơn bạn nhiều nhee

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

Ta thấy \((2n+1)^2=4n^2+4n+1> 4n^2+4n\)

\(\Leftrightarrow (2n+1)^2> 2n(2n+2)\) \(\Leftrightarrow \frac{1}{(2n+1)^2}\leq \frac{1}{2n(2n+2)}\)

Do đó:

\(\left\{\begin{matrix} \frac{1}{3^2}< \frac{1}{2.4}\\ \frac{1}{5^2}< \frac{1}{4.6}\\ .......\\ \frac{1}{(2n+1)^2}< \frac{1}{2n(2n+2)}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{9}+\frac{1}{25}+....+\frac{1}{(2n+1)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n(2n+2)}=M\) (1)

\(2M=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{2n(2n+2)}\)

\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{2n+2-2n}{2n(2n+2)}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\)

\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\)

\(\Rightarrow M< \frac{1}{4} (2)\)

Từ (1),(2) suy ra \(\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2n+1)^2}< \frac{1}{4}\) (đpcm)