K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Ta có:

\(C=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)

\(\Rightarrow C=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{2500}\)

\(\Rightarrow C=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...+1-\dfrac{1}{50^2}\)

\(\Rightarrow C=\left(1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\) (có \(49\) chữ số \(1\))

\(\Rightarrow C=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Lại có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}< 1\)

\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>-1\)

\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>49-1=48\)

Vậy \(C=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}>48\) (Đpcm)

19 tháng 3 2017

Cảm ơn bn nhìu nhé!!mk còn 1 số câu chưa giải dc nếu bn làm dc thì giúp mk nhé!! mk cảm ơn trước ha!!

NV
16 tháng 5 2021

\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)

Từ đó ta có:

\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{50^2-1}{50^2}>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+...+1-\dfrac{1}{49.50}\)

\(\Rightarrow A>49-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)

\(\Rightarrow A>49-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(\Rightarrow A>49-\left(1-\dfrac{1}{50}\right)=48+\dfrac{1}{50}>48\)

16 tháng 5 2021

\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\\ A=\left(1+1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\\ A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\)

Có \(\dfrac{1}{4}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\\ \dfrac{1}{9}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\\ \dfrac{1}{16}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\\ ...\\ \dfrac{1}{2500}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1-\dfrac{1}{50}< 1\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1\)

\(\Rightarrow A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)>49-1\\ \Rightarrow A>48\)

29 tháng 7 2017

Hỏi đáp Toán

= \(49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4949}{102}\notin N\)

Vậy \(S\notin N\)

29 tháng 7 2017

\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)\(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)

\(\Rightarrow S=1-\dfrac{1}{4}+1-\dfrac{1}{9}+1-\dfrac{1}{16}+...+1-\dfrac{1}{2500}\)

\(\Rightarrow S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{50^2}\)

\(\Rightarrow S=\left(1+1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Từ 2-50 có 49 số nên có 49 số 1

\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< 49\)

Nhận xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\)

\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>-1\)

\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)

\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>48\) (2)

Từ (1) và (2) \(\Rightarrow48< S< 49\)

Vậy \(S\notin N\)

28 tháng 4 2017

a)\(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2^2-1}+\dfrac{1}{4^2-1}+...+\dfrac{1}{100^2-1}\)

\(A< \dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\)

\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}< \dfrac{50}{100}=\dfrac{1}{2}\)

Vậy \(A< \dfrac{1}{2}\)

b)B=\(\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{2499}{2500}\)

49-B=\(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

\(49-B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(49-B< 1-\dfrac{1}{50}< 1\Leftrightarrow49< 1+B\Leftrightarrow B>48\)(ĐPCM)

28 tháng 4 2017

b) Đặt :

\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+............+\dfrac{2499}{2500}\)

\(\Rightarrow A=\dfrac{4}{4}-\dfrac{1}{4}+\dfrac{9}{9}-\dfrac{1}{9}+.........+\dfrac{2500}{2500}-\dfrac{1}{2500}\)

\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...........+1-\dfrac{1}{50^2}\)

\(A=\left(1+1+....+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)\)(\(49\) chữ số \(1\))

\(A=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{50^2}\right)\)

Lại có :

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)

Mà :

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}< 1\)

\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)>-1\)

\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+............+\dfrac{1}{50^2}\right)>49-1\)\(=48\)

\(\Rightarrow A>48\) \(\rightarrowđpcm\)

5 tháng 3 2017

bạn​ ra số to quá vậyoho

30 tháng 4 2017

\(CóS=\dfrac{3}{2^2}+\dfrac{8}{3^2}+\dfrac{15}{4^2}+...+\dfrac{2499}{50^2}\)

\(Tathấy\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\)\(-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>-1\)

\(S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)\(S=\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>48\)

\(\rightarrow S>48\)

\(VậyS>48\)

2 tháng 4 2017

\(B=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}\)

\(=1-\dfrac{3}{4}+1-\dfrac{8}{9}+1-\dfrac{15}{16}+1-\dfrac{24}{25}...+1-\dfrac{2499}{2500}\)

\(=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+...+\dfrac{1}{2500}\right)\)

Lại có: \(49-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+...+\dfrac{1}{50.50}\right)< 49-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{50.51}\right)\)

\(49-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{50.51}\right)\)

\(=49-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)

\(=49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4942}{102}\) \(\notin Z\)

Vậy B không phải là số nguyên

4 tháng 7 2017

\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)

\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)

\(A=\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)

\(A=\dfrac{1.2.3.....29}{2.3.4....30}.\dfrac{3.4.5.....31}{2.3.4.....30}\)

\(A=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)

\(B=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}\)

\(B=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.....\dfrac{49.51}{50.50}\)

\(B=\dfrac{2.4.3.5.4.6.....49.51}{3.3.4.4.5.5....50.50}\)

\(B=\dfrac{2.3.4......49}{3.4.5....50}.\dfrac{4.5.6.....51}{3.4.5....50}\)

\(B=\dfrac{2}{50}.\dfrac{51}{3}=\dfrac{17}{25}\)

4 tháng 7 2017

Giải:

\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}.\)

\(A=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{29.31}{30^2}.\)

\(A=\dfrac{1.2.3.....29}{2.3.4.....30}.\dfrac{2.3.4.....31}{2.3.4.....30}.\)

\(A=\dfrac{1}{30}.31=\dfrac{30}{31}.\)

Vậy \(A=\dfrac{30}{31}.\)

27 tháng 2 2022

= 2x4/3x3 x 3x5/4x4 x 4x6/5x5 x.....x 49x51/50x50

= 2x4x3x5x4x6x...49x51/ 3x3x4x4x5x5...50x50

= 2x51/3x50

= 17/25 

2 tháng 4 2017

A=2.4/3^2 . 3.5/4^2 . 4.6/5^2 ............ . 49.51/50^2

A=2/3-51/50

A=17/25.

Chúc bạn hok tốt.

12 tháng 4 2017

Bài này cũng dễ ý mà, vô cùng đơn giản.........

Giải:

Ta có: \(A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}.\)

\(=\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{49.51}{50^2}.\)

\(=\dfrac{\left(2.3.4.....49\right)\left(4.5.6.....51\right)}{\left(3.4.5.....50\right)\left(3.4.5.....50\right)}.\)

\(=\dfrac{2.51}{3.50}.\)

\(=\dfrac{17}{25}.\)

CHÚC BN HỌC TỐT!!! ^ _ ^

Đừng quên bình luận nếu bài mik sai nhé!!! - _ -

Còn nếu bài mik đúng thì nhớ tick mik để mik lấy SP nha!!! ^ - ^

27 tháng 3 2017

A= 3^2-1/3.3 . 4^2-1/4.4 . 5^2-1/5.5 . ... 50^2-1/50.50 A= (3+1).(3-1).(4+1).(4-1).(5+1).(5-1). ... (50+1).(50-1) / 3.3.4.4.5.5. ... . 50.50 A=4.2.5.3.6.4. ... 51.49 / 3.3.4.4.5.5....50.50 A=(4.5.6. ... .51).(2.3.4. ... 49)/(3.4.5.... .50).(3.4.5.. ... 50) A= 51.2/3.50 A=17/25

11 tháng 4 2017

Ta có:

\(A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}......\dfrac{2499}{2500}\)

= \(\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}......\dfrac{49.51}{50.50}\)

= \(\dfrac{2.4.3.5.4.6......49.51}{3.3.4.4.5.5......50.50}\)

= \(\dfrac{\left(2.3.4....49\right)\left(4.5.6....51\right)}{\left(3.4.5....50\right)\left(3.4.5....50\right)}\)

= \(\dfrac{2}{50}.\dfrac{51}{3}\) = \(\dfrac{17}{25}\)