So sánh mà ko dùng máy tính:\(\sqrt{12+6\sqrt{ }3}\) và \(\sqrt{9+4\sqrt{ }5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\sqrt{25}-\sqrt{16}-\sqrt{2025}\)
\(=5-4-45=-44\)
Vậy \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
Có : \(\sqrt{12}< \sqrt{16}=4\)
\(\sqrt{2016}< \sqrt{2025}\) => \(\sqrt{12}+\sqrt{2016}< 4+45\)
=> \(-\sqrt{12}-\sqrt{2016}>-49\)(1)
Lại có : \(\sqrt{27}>\sqrt{25}=5\)(2)
Từ (1),(2) có : \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>5-49\)or \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
Ta có :
\(\sqrt{3}< \sqrt{4}=2\)
\(\sqrt{8}< \sqrt{9}=3\)
\(\sqrt{24}< \sqrt{25}=5\)
\(\Rightarrow\sqrt{3}+\sqrt{8}+\sqrt{24}< 2+3+5=10\)(đpcm)
Vậy ...
Ta có:\(4\sqrt{5}-\sqrt{26}=\sqrt{16}.\sqrt{5}-\sqrt{26}\)
\(=\sqrt{80}-\sqrt{26}\)
\(< \sqrt{81}-\sqrt{26}< \sqrt{81}-\sqrt{25}\)
\(=9-5=4\)
Vậy \(4>4\sqrt{5}-\sqrt{26}\)
a. Ta có : \(\sqrt{8}< \sqrt{9}\) ( vì 8< 9)
hay \(2\sqrt{2}< 3\)
\(\Rightarrow\) \(2\sqrt{2}+6< 3+6\)
hay \(2\sqrt{2}+6< 9\)
b. Ta có : \(\sqrt{6}>\sqrt{4}\) (vì 6 > 4 )
hay \(\sqrt{2.3}>2\)
\(\Rightarrow\) 2\(\sqrt{2.3}\) > 4
\(\Rightarrow\) 2 + \(2\sqrt{2.3}\) + 3 > 9
hay \(\left(\sqrt{2}+\sqrt{3}\right)^2\)> 9
\(\Rightarrow\) \(\sqrt{2}+\sqrt{3}>3\)
c. Ta có: \(\sqrt{80}>\sqrt{49}\) (vì 80>49)
hay \(4\sqrt{5}\) > 7
\(\Rightarrow\) 9 + \(4\sqrt{5}\) > 16
d. Ta có : \(2\sqrt{33}>2\sqrt{25}\) (vì 33> 25 ) hay \(2\sqrt{23}>2.5\)
\(\Rightarrow\) - \(2\sqrt{33}\) < - 2.5
\(\Rightarrow\) 11 - \(2\sqrt{11.3}\) +3 < 11- 2.5 +3
hay \(\left(\sqrt{11}-\sqrt{3}\right)^2\) < 4
\(\Rightarrow\) \(\sqrt{11}-\sqrt{3}< 2\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2014}+\sqrt{2015}\)
nên \(\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)
Ta có: √12+6√3 = √9+6√3+√3
=3+√3 (1)ta co√9+4√5=√5+2 (2)từ (1) và (2) ta co√12+6√3>√9+4√5