hiệu bình phương của hai số tự nhiên liên tiếp là 15. tìm số tự nhiên bé trong hai số đó?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số đề cho là a;b
Ta có: a=b+1
a2-b2=15
(b+1)2-b2=15
=>b=7
=>a=7+1=8
Vậy số tự nhiên lớn trong 2 số đó là 8
Gọi 2 số tự nhiên liên tiếp là a và a + 1 thì :
17 = (a + 1)2 - a2 = (a + 1 - a)(a + 1 + a) = 2a + 1 => Số tự nhiên nhỏ nhất trong 2 số đó là : a = (17 - 1) : 2 = 8
Gọi 2 số tự nhiên chẵn liên tiếp đó là 2a và 2a + 2 với \(a\in N\)
Theo bài ra ta có :
\(\left(2a+2\right)^2-\left(2a\right)^2=44\)
\(\Rightarrow4a^2+8a+4-4a^2=44\)
\(\Rightarrow8a=40\)
\(\Rightarrow a=5\)
Vậy 2 số cần tìm là : \(\hept{\begin{cases}2.5=10\\2.5+2=12\end{cases}}\)
Gọi 2 số tự nhiên lẻ đó làn lượt là a và a + 2
Ta có: ( a + 2 )2 - a2 = 200
a2 + 4a + 4 - a2 = 200
4a = 196
a = 49
a + 2 = 51
Vậy 2 số tự nhiên lẻ cần tìm là 49 và 51
gọi 2 số lẻ liên tiếp cần tìm là \(2k-1\)và \(2k+1\).
Vì 2k+1 > 2k-1 nên ta có \(\left(2k+1\right)^2-\left(2k-1\right)^2=200\)
\(\Leftrightarrow4k^2+4k+1-\left(4k^2-4k+1\right)=200\)
\(\Leftrightarrow8k=200\)\(\Leftrightarrow k=\frac{200}{8}=25\)
Thay k=25 vào 2k-1 và 2k+1 ta được 2 số cần tìm là 49 và 51.
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
Gọi 2 số tự nhiên liên tiếp là a và a + 1
\(\left(a+1\right)^2-a^2=17\)
\(\left(a-a+1\right)\left(a-1+a\right)=17\)
\(2a-1=17\)
\(2a=17+1\)
2a = 18
a = 18 : 2
a = 9
ĐS: 9
sai r bạn ạ. Là 8 mới đúng chứ!
(a+1)2 - a2 = 17
( a + 1 + a)( a + 1 - a) = 17
2a + 1 = 17
=>2a = 16
=> a =16/2 = 8
khooooooooooooooooooooooong bieeeeeeeeeeeeeeeeeeeeeeeetsss
Gọi 2 số là a và b(a là số bé)
ta có: b2-a2=15
<=>(b+a)(b-a)=15
<=>(a+a+1)(a+1-a)=15(vì b=a+1)
<=>(2a+1)*1=15
=>2a+1=15
<=>2a=14
<=>a=7
Vậy số bé là 7