Chứng tỏ rằng : Với k thuộc N khác 0 ta luôn có :
k.(k+1).(k+2)-(k-1).k.(k+1)=3k.(k+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
k . (k+ 1) . (k+2) - k .(k +1) . (k-1)
= [ (k+2)-(k -1) ] .k .(k+1)
= (k + 2 -k +1) . k .(k+1)
= 3k (k+1)
Vậy: k . (k+ 1) . (k+2) - k .(k +1) . (k-1) = 3k (k+1)
S = 1.2+2.3+...+n.(n+1)
3S = 3.1.2 +3.2.3+...+3.n. (n+1)
3S = 1.2.3 - 0.1.2 +2.3.4 -1.2.3 + ... + n . (n+1 ) . (n+2) - (n-1).n.(n+1)
3S = n.(n+1).(n+2)
a) Xét trên tử
Ta có :
1.5.6 + 2.10.12 + 4.20.24 + 9.45.54
= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6
= 1.5.6 ( 2^3 + 4^3 + 9^3 )
Xét mẫu
Ta có :
1.3.5 + 2.6.10 + 4.12.20 + 9.27.45
= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5
= 1.3.5 ( 2^3 + 4^3 + 9^3 )
Ta có
A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2
b) Ta có :
k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )
Ta có :
S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )
\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3
3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
3S = n(n + 1)(n + 2)
S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Ta có:k.(k+1).(k+2)-(k+1).k.(k+1)
= k(k+1)\([\left(k+2\right)-\left(k-1\right)]\)
= k(k+1) \([k+2-k+1]\)
= k(k+1) \([\left(k-k\right)+\left(2+1\right)]\)
=k(k+1).3
=3k(k+1)
Vậy : Với k thuộc N khác 0 ta luôn có :
k.(k+1).(k+2)-(k-1).k.(k+1)=3k.(k+1).
chính xác